The effects of beta (2)-adrenergic receptors activation on the cardiovascular system and on the skeletal muscle: A narrative review
DOI:
https://doi.org/10.14198/jhse.2021.16.Proc3.53Keywords:
Beta(2)-adrenergic receptors, Beta(2)-agonist, Catecholamines, Cardiovascular system, Skeletal muscle, DopingAbstract
Beta(2)-adrenergic receptors (adrenoceptors) are activated by the catecholamines norepinephrine and epinephrine. Adrenoceptors are found in different tissues, such as smooth muscle, skeletal muscle and myocardium. Stimulation of adrenoceptors is implicated in several physiological functions in the body, such as bronchodilation, increased perfusion and vasodilation. The latters, together with increased muscular mass and contraction speed, facilitate muscle’s motility and contraction. In the cardiovascular system, the activation of adrenoceptors increases heart muscle contraction, cardiac output and heart rate. Some studies also suggested a cardioprotective role of the stimulation of adrenoceptors. Beta(2)-adrenergic receptors agonists, principally divided in long-acting beta(2) agonists (LABAs) and short-acting beta(2) agonists (SABAs), are primarily used to treat asthma and other pulmonary disorders. Beta(2)-adrenergic receptors activation has been correlated with anabolic properties and muscular hypertrophy with the use of oral clenbuterol, as well as intravenous albuterol. Given these anabolic, lipolytic and performance-enhancing effects, LABAs are frequently abused by athletes. For this reason, most of these drugs are banned by the World Anti-Doping Agency, or admissible only with limitations. The aim of this narrative review is to report the results of some recent studies about the effects of beta(2)-adrenergic receptors activation on the cardiovascular system and on the skeletal muscle.
Downloads
References
Agarwal, S. R., MacDougall, D. A., Tyser, R., Pugh, S. D., Calaghan, S. C., & Harvey, R. D. (2011). Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 50(3), 500-509. https://doi.org/10.1016/j.yjmcc.2010.11.015
Aránguiz-Urroz, P., Canales, J., Copaja, M., Troncoso, R., Vicencio, J. M., Carrillo, C., Lara, H., Lavandero, S., & Díaz-Araya, G. (2011). Beta2-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1812(1), 23-31. https://doi.org/10.1016/j.bbadis.2010.07.003
Belviso, I., Angelini, F., Di Meglio, F., Picchio, V., Sacco, AM., Nocella, C., Romano, V., Nurzynska, D., Frati, G., Maiello, C., Messina, E., Montagnani, S., Pagano, F., Castaldo, C., Chimenti, I. (2020a). The Microenvironment of Decellularized Extracellular Matrix from Heart Failure Myocardium Alters the Balance between Angiogenic and Fibrotic Signals from Stromal Primitive Cells. Int J Mol Sci, 21(21):7903. https://doi.org/10.3390/ijms21217903
Belviso, I., Romano, V., Sacco, AM., Ricci, G., Massai, D., Cammarota, M., Catizone, A., Schiraldi, C., Nurzynska, D., Terzini, M., Aldieri, A., Serino, G., Schonauer, F., Sirico, F., D'Andrea, F., Montagnani, S., Di Meglio, F., Castaldo, C. (2020b). Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration. Front Bioeng Biotechnol, 20;8:229. http://doi.org/10.3389/fbioe.2020.00229
Berdeaux, R., & Stewart, R. (2012). cAMP signaling in skeletal muscle adaptation: Hypertrophy, metabolism, and regeneration. American Journal of Physiology. Endocrinology and Metabolism, 303(1), E1-17. https://doi.org/10.1152/ajpendo.00555.2011
Bernstein, D., Fajardo, G., & Zhao, M. (2011). The role of β-adrenergic receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Progress in Pediatric Cardiology, 31(1), 35-38. https://doi.org/10.1016/j.ppedcard.2010.11.007
Bristow, M. R., Ginsburg, R., Umans, V., Fowler, M., Minobe, W., Rasmussen, R., Zera, P., Menlove, R., Shah, P., & Jamieson, S. (1986). Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circulation Research, 59(3), 297-309. https://doi.org/10.1161/01.res.59.3.297
Brodde, O.-E., Bruck, H., & Leineweber, K. (2006). Cardiac adrenoceptors: Physiological and pathophysiological relevance. Journal of Pharmacological Sciences, 100(5), 323-337. https://doi.org/10.1254/jphs.crj06001x
Busquets, S., Figueras, M. T., Fuster, G., Almendro, V., Moore-Carrasco, R., Ametller, E., Argilés, J. M., & López-Soriano, F. J. (2004). Anticachectic effects of formoterol: A drug for potential treatment of muscle wasting. Cancer Research, 64(18), 6725-6731. https://doi.org/10.1158/0008-5472.CAN-04-0425
Castaldo, C., Di Meglio, F., Miraglia, R., Sacco, AM., Romano, V., Bancone, C., Della Corte, A., Montagnani, S., Nurzynska, D. (2013). Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart. Biomed Res Int, 2013:352370. http://doi.org/10.1155/2013/352370
Cazzola, M., Spina, D., & Matera, M. G. (1997). The use of bronchodilators in stable chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics, 10(3), 129-144. https://doi.org/10.1006/pupt.1997.0087
Chikazawa, M., & Sato, R. (2018a). Identification of Functional Food Factors as β2-Adrenergic Receptor Agonists and Their Potential Roles in Skeletal Muscle. Journal of Nutritional Science and Vitaminology, 64(1), 68-74. https://doi.org/10.3177/jnsv.64.68
Chikazawa, M., & Sato, R. (2018b). Identification of a Novel Function of Resveratrol and Genistein as a Regulator of β2 -Adrenergic Receptor Expression in Skeletal Muscle Cells and Characterization of Promoter Elements Required for Promoter Activation. Molecular Nutrition & Food Research, 62(22), e1800530. https://doi.org/10.1002/mnfr.201800530
Chisholm, K. M., Chang, K. W., Truong, M. T., Kwok, S., West, R. B., & Heerema-McKenney, A. E. (2012). β-Adrenergic receptor expression in vascular tumors. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 25(11), 1446-1451. https://doi.org/10.1038/modpathol.2012.108
Choo, J. J., Horan, M. A., Little, R. A., & Rothwell, N. J. (1992). Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation. The American Journal of Physiology, 263(1 Pt 1), E50-56. https://doi.org/10.1152/ajpendo.1992.263.1.E50
D'Angelo, G., Lee, H., & Weiner, R. I. (1997). CAMP-dependent protein kinase inhibits the mitogenic action of vascular endothelial growth factor and fibroblast growth factor in capillary endothelial cells by blocking Raf activation. Journal of Cellular Biochemistry, 67(3), 353-366. https://doi.org/10.1002/(SICI)1097-4644(19971201)67:3<353::AID-JCB7>3.0.CO;2-V
Davis, E., Loiacono, R., & Summers, R. J. (2008). The rush to adrenaline: Drugs in sport acting on the β-adrenergic system. British Journal of Pharmacology, 154(3), 584-597. https://doi.org/10.1038/bjp.2008.164
Fajardo, G., Zhao, M., Berry, G., Wong, L.-J., Mochly-Rosen, D., & Bernstein, D. (2011). Β2-adrenergic receptors mediate cardioprotection through crosstalk with mitochondrial cell death pathways. Journal of Molecular and Cellular Cardiology, 51(5), 781-789. https://doi.org/10.1016/j.yjmcc.2011.06.019
Freedman, N. J., & Lefkowitz, R. J. (2004). Anti-β1-adrenergic receptor antibodies and heart failure: Causation, not just correlation. Journal of Clinical Investigation, 113(10), 1379-1382. https://doi.org/10.1172/JCI200421748
Gonçalves, D. A. P., Silveira, W. A., Lira, E. C., Graça, F. A., Paula-Gomes, S., Zanon, N. M., Kettelhut, I. C., & Navegantes, L. C. C. (2011). Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. American Journal of Physiology-Endocrinology and Metabolism, 302(1), E123-E133. https://doi.org/10.1152/ajpendo.00188.2011
Guimarães, S., & Moura, D. (2001). Vascular adrenoceptors: An update. Pharmacological Reviews, 53(2), 319-356.
Head, B. P., Patel, H. H., Roth, D. M., Lai, N. C., Niesman, I. R., Farquhar, M. G., & Insel, P. A. (2005). G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. The Journal of Biological Chemistry, 280(35), 31036-31044. https://doi.org/10.1074/jbc.M502540200
Hostrup, M., Kalsen, A., Onslev, J., Jessen, S., Haase, C., Habib, S., Ørtenblad, N., Backer, V., & Bangsbo, J. (2015). Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men. Journal of Applied Physiology (Bethesda, Md.: 1985), 119(5), 475-486. https://doi.org/10.1152/japplphysiol.00319.2015
Iaccarino, G., Ciccarelli, M., Sorriento, D., Galasso, G., Campanile, A., Santulli, G., Cipolletta, E., Cerullo, V., Cimini, V., Altobelli, G. G., Piscione, F., Priante, O., Pastore, L., Chiariello, M., Salvatore, F., Koch, W. J., & Trimarco, B. (2005). Ischemic neoangiogenesis enhanced by beta2-adrenergic receptor overexpression: A novel role for the endothelial adrenergic system. Circulation Research, 97(11), 1182-1189. https://doi.org/10.1161/01.RES.0000191541.06788.bb
Jean-Baptiste, G., Yang, Z., Khoury, C., Gaudio, S., & Greenwood, M. T. (2005). Peptide and non-peptide G-protein coupled receptors (GPCRs) in skeletal muscle. Peptides, 26(8), 1528-1536. https://doi.org/10.1016/j.peptides.2005.03.011
Jenkins, N. D. M., Colquhoun, R. J., Tomko, P. M., Gradnigo, T., Magrini, M. A., Muddle, T. W. D., Fleming, S., Ferrell, M., & El-Sohemy, A. (2018). Genetic variant in the β2 -adrenergic receptor (Arg16Gly) influences fat-free mass, muscle strength and motor unit behaviour in young men. Experimental Physiology, 103(12), 1645-1655. https://doi.org/10.1113/EP087145
Jessen, S., Onslev, J., Lemminger, A., Backer, V., Bangsbo, J., & Hostrup, M. (2018). Hypertrophic effect of inhaled beta2 -agonist with and without concurrent exercise training: A randomized controlled trial. Scandinavian Journal of Medicine & Science in Sports, 28(10), 2114-2122. https://doi.org/10.1111/sms.13221
Joassard, O. R., Amirouche, A., Gallot, Y. S., Desgeorges, M. M., Castells, J., Durieux, A.-C., Berthon, P., & Freyssenet, D. G. (2013). Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle. The International Journal of Biochemistry & Cell Biology, 45(11), 2444-2455. https://doi.org/10.1016/j.biocel.2013.07.019
Kamalakkannan, G., Petrilli, C. M., George, I., LaManca, J., McLaughlin, B. T., Shane, E., Mancini, D. M., & Maybaum, S. (2008). Clenbuterol increases lean muscle mass but not endurance in patients with chronic heart failure. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation, 27(4), 457-461. https://doi.org/10.1016/j.healun.2008.01.013
Kim, J., Grotegut, C. A., Wisler, J. W., Li, T., Mao, L., Chen, M., Chen, W., Rosenberg, P. B., Rockman, H. A., & Lefkowitz, R. J. (2018). β-arrestin 1 regulates β2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility. Skeletal Muscle, 8. https://doi.org/10.1186/s13395-018-0184-8
Kim, J., Grotegut, C. A., Wisler, J. W., Mao, L., Rosenberg, P. B., Rockman, H. A., & Lefkowitz, R. J. (2020). The β-arrestin-biased β-adrenergic receptor blocker carvedilol enhances skeletal muscle contractility. Proceedings of the National Academy of Sciences, 117(22), 12435-12443. https://doi.org/10.1073/pnas.1920310117
Koopman, R., Gehrig, S. M., Léger, B., Trieu, J., Walrand, S., Murphy, K. T., & Lynch, G. S. (2010). Cellular mechanisms underlying temporal changes in skeletal muscle protein synthesis and breakdown during chronic {beta}-adrenoceptor stimulation in mice. The Journal of Physiology, 588(Pt 23), 4811-4823. https://doi.org/10.1113/jphysiol.2010.196725
Koziczak-Holbro, M., Rigel, D. F., Dumotier, B., Sykes, D. A., Tsao, J., Nguyen, N.-H., Bösch, J., Jourdain, M., Flotte, L., Adachi, Y., Kiffe, M., Azria, M., Fairhurst, R. A., Charlton, S. J., Richardson, B. P., Lach-Trifilieff, E., Glass, D. J., Ullrich, T., & Hatakeyama, S. (2019). Pharmacological Characterization of a Novel 5-Hydroxybenzothiazolone-Derived β2-Adrenoceptor Agonist with Functional Selectivity for Anabolic Effects on Skeletal Muscle Resulting in a Wider Cardiovascular Safety Window in Preclinical Studies. The Journal of Pharmacology and Experimental Therapeutics, 369(2), 188-199. https://doi.org/10.1124/jpet.118.255307
Kuramoto, N., Nomura, K., Kohno, D., Kitamura, T., Karsenty, G., Hosooka, T., & Ogawa, W. (2021). Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load. Scientific Reports, 11(1), 3447. https://doi.org/10.1038/s41598-021-83098-z
Le Panse, B., Collomp, K., Portier, H., Lecoq, A.-M., Jaffre, C., Beaupied, H., Richard, O., Benhamou, L., De Ceaurriz, J., & Courteix, D. (2005). Effects of short-term salbutamol ingestion during a Wingate test. International Journal of Sports Medicine, 26(7), 518-523. https://doi.org/10.1055/s-2004-821224
Li, Y., Yuan, H., Sun, L., Zhou, Q., Yang, F., Yang, Z., & Liu, D. (2019). β2-Adrenergic Receptor Gene Polymorphisms Are Associated with Cardiovascular Events But not All-Cause Mortality in Coronary Artery Disease Patients: A Meta-Analysis of Prospective Studies. Genetic Testing and Molecular Biomarkers, 23(2), 124-137. https://doi.org/10.1089/gtmb.2018.0153
Meszaros, J. G., Gonzalez, A. M., Endo-Mochizuki, Y., Villegas, S., Villarreal, F., & Brunton, L. L. (2000). Identification of G protein-coupled signaling pathways in cardiac fibroblasts: Cross talk between G(q) and G(s). American Journal of Physiology. Cell Physiology, 278(1), C154-162. https://doi.org/10.1152/ajpcell.2000.278.1.C154
Minetti, G. C., Feige, J. N., Rosenstiel, A., Bombard, F., Meier, V., Werner, A., Bassilana, F., Sailer, A. W., Kahle, P., Lambert, C., Glass, D. J., & Fornaro, M. (2011). Gαi2 Signaling Promotes Skeletal Muscle Hypertrophy, Myoblast Differentiation, and Muscle Regeneration. Science Signaling, 4(201), ra80-ra80. https://doi.org/10.1126/scisignal.2002038
Navegantes, L. C., Resano, N. M. Z., Baviera, A. M., Migliorini, R. H., & Kettelhut, I. C. (2004). Effect of sympathetic denervation on the rate of protein synthesis in rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 286(4), E642-647. https://doi.org/10.1152/ajpendo.00371.2003
Navegantes, L. C., Resano, N. M., Migliorini, R. H., & Kettelhut, I. C. (2000). Role of adrenoceptors and cAMP on the catecholamine-induced inhibition of proteolysis in rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 279(3), E663-668. https://doi.org/10.1152/ajpendo.2000.279.3.E663
Navegantes, L. C., Resano, N. M., Migliorini, R. H., & Kettelhut IC, null. (2001). Catecholamines inhibit Ca(2+)-dependent proteolysis in rat skeletal muscle through beta(2)-adrenoceptors and cAMP. American Journal of Physiology. Endocrinology and Metabolism, 281(3), E449-454. https://doi.org/10.1152/ajpendo.2001.281.3.E449
Noh, H., Yu, M. R., Kim, H. J., Lee, J. H., Park, B.-W., Wu, I.-H., Matsumoto, M., & King, G. L. (2017). Beta 2-adrenergic receptor agonists are novel regulators of macrophage activation in diabetic renal and cardiovascular complications. Kidney International, 92(1), 101-113. https://doi.org/10.1016/j.kint.2017.02.013
Pellegrino, M. A., D'Antona, G., Bortolotto, S., Boschi, F., Pastoris, O., Bottinelli, R., Polla, B., & Reggiani, C. (2004). Clenbuterol antagonizes glucocorticoid-induced atrophy and fibre type transformation in mice. Experimental Physiology, 89(1), 89-100. https://doi.org/10.1113/expphysiol.2003.002609
Rang, H. P., Dale, M. M., Ritter, J. M., & Moore, P. (2003). Pharmacology. Churchill Livingstone.
Rybin, V. O., Xu, X., Lisanti, M. P., & Steinberg, S. F. (2000). Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. The Journal of Biological Chemistry, 275(52), 41447-41457. https://doi.org/10.1074/jbc.M006951200
Santos, I. N., & Spadari-Bratfisch, R. C. (2006). Stress and cardiac beta adrenoceptors. Stress (Amsterdam, Netherlands), 9(2), 69-84. https://doi.org/10.1080/10253890600771858
Sato, S., Shirato, K., Tachiyashiki, K., & Imaizumi, K. (2011). Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy. Journal of Biomedicine and Biotechnology, 2011. https://doi.org/10.1155/2011/729598
Scholpa, N. E., Simmons, E. C., Tilley, D. G., & Schnellmann, R. G. (2019). Β2-adrenergic receptor-mediated mitochondrial biogenesis improves skeletal muscle recovery following spinal cord injury. Experimental Neurology, 322, 113064. https://doi.org/10.1016/j.expneurol.2019.113064
Spadari, R. C., Cavadas, C., de Carvalho, A. E. T. S., Ortolani, D., de Moura, A. L., & Vassalo, P. F. (2018). Role of Beta-adrenergic Receptors and Sirtuin Signaling in the Heart During Aging, Heart Failure, and Adaptation to Stress. Cellular and Molecular Neurobiology, 38(1), 109-120. https://doi.org/10.1007/s10571-017-0557-2
Storch, C. H., & Hoeger, P. H. (2010). Propranolol for infantile haemangiomas: Insights into the molecular mechanisms of action. The British Journal of Dermatology, 163(2), 269-274. https://doi.org/10.1111/j.1365-2133.2010.09848.x
Toledo, M., Busquets, S., Penna, F., Zhou, X., Marmonti, E., Betancourt, A., Massa, D., López-Soriano, F. J., Han, H. Q., & Argilés, J. M. (2016). Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and β-2 agonist. International Journal of Cancer, 138(8), 2021-2029. https://doi.org/10.1002/ijc.29930
Wang, Q., Liu, Y., Fu, Q., Xu, B., Zhang, Y., Kim, S., Tan, R., Barbagallo, F., West, T., Anderson, E., Wei, W., Abel, E. D., & Xiang, Y. K. (2017). Inhibiting Insulin-Mediated β2-Adrenergic Receptor Activation Prevents Diabetes-Associated Cardiac Dysfunction. Circulation, 135(1), 73-88. https://doi.org/10.1161/CIRCULATIONAHA.116.022281
Woo, A. Y. H., & Xiao, R. (2012). β-Adrenergic receptor subtype signaling in heart: From bench to bedside. Acta Pharmacologica Sinica, 33(3), 335-341. https://doi.org/10.1038/aps.2011.201
Wright, P. T., Nikolaev, V. O., O'Hara, T., Diakonov, I., Bhargava, A., Tokar, S., Schobesberger, S., Shevchuk, A. I., Sikkel, M. B., Wilkinson, R., Trayanova, N. A., Lyon, A. R., Harding, S. E., & Gorelik, J. (2014). Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. Journal of Molecular and Cellular Cardiology, 67, 38-48. https://doi.org/10.1016/j.yjmcc.2013.12.003
Xia, K., Ding, R., Zhang, Z., Li, W., Shang, X., Yang, X., Wang, L., & Zhang, Q. (2017). The association of eight potentially functional polymorphisms in five adrenergic receptor-encoding genes with myocardial infarction risk in Han Chinese. Gene, 624, 43-49. https://doi.org/10.1016/j.gene.2017.04.045
Xiang, Y., Rybin, V. O., Steinberg, S. F., & Kobilka, B. (2002). Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. The Journal of Biological Chemistry, 277(37), 34280-34286. https://doi.org/10.1074/jbc.M201644200
Yimlamai, T., Dodd, S. L., Borst, S. E., & Park, S. (2005). Clenbuterol induces muscle-specific attenuation of atrophy through effects on the ubiquitin-proteasome pathway. Journal of Applied Physiology (Bethesda, Md.: 1985), 99(1), 71-80. https://doi.org/10.1152/japplphysiol.00448.2004
Zhu, W. Z., Zheng, M., Koch, W. J., Lefkowitz, R. J., Kobilka, B. K., & Xiao, R. P. (2001). Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1607-1612. https://doi.org/10.1073/pnas.98.4.1607
Ziegler, O., Anderson, K., Liu, Y., Ehsan, A., Fingleton, J., Sodha, N., Feng, J., & Sellke, F. W. (2020). Skeletal muscle microvasculature response to β-adrenergic stimuli is diminished with cardiac surgery. Surgery, 167(2), 493-498. https://doi.org/10.1016/j.surg.2019.07.018
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Journal of Human Sport and Exercise
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.