From “sliding” to “winding” filaments theory: A narrative review of mechanisms behind skeletal muscle contraction

Authors

  • Pietro Montesano University of Naples "Parthenope", Italy
  • Stefano palermi University of Naples "Federico II", Italy
  • Bruno Massa University of Naples "Federico II", Italy
  • Filomena Mazzeo University of Naples "Parthenope", Italy

Keywords:

Muscle contraction, Actin, Myosin, Titin

Abstract

The physiological mechanisms behind muscle contraction are a main concept in sport medicine and rehabilitation. The sarcomere is the functional unit of skeletal muscle and several proteins definite its complex structure. The most common theory to explain muscle contraction was proposed in the last 50’s and has become widely popular and accepted: the “sliding filaments” theory. Even if this hypothesis was able to justify some form of muscle contraction, other processes are not fully described by it. Eccentric contraction and some phenomena, like the “force enhancement during stretch” concept described in the 2002, are not explicable according to the sliding filament theory. Therefore, several hypotheses have been suggested over the years, such as the “popping sarcomeres” theory and the “winding filament” theory. Some other proteins, like titin, have gained a main role in the physiology of the sarcomere and should be relevant to explain mechanisms of eccentric contraction, where the sarcomere generates highest level of tension while it is lengthening. The aim of this review is to summarize the physiological theories of muscle contraction and to define concepts applicable in sport medicine and in rehabilitation areas.

Downloads

Download data is not yet available.

References

Abbott, B. C., & Aubert, X. M. (1952). The force exerted by active striated muscle during and after change of length. The Journal of Physiology, 117(1), 77-86.

Ackermann, M. A., & Kontrogianni-Konstantopoulos, A. (2013). Myosin binding protein-C slow: A multifaceted family of proteins with a complex expression profile in fast and slow twitch skeletal muscles. Frontiers in Physiology, 4 DEC. https://doi.org/10.3389/fphys.2013.00391

Astumian, R. (2015). Huxley's Model for Muscle Contraction Revisited: The Importance of Microscopic Reversibility. Topics in Current Chemistry, 369. https://doi.org/10.1007/128_2015_644

Bianco, P., Nagy, A., Kengyel, A., Szatmári, D., Mártonfalvi, Z., Huber, T., & Kellermayer, M. S. Z. (2007). Interaction forces between F-actin and titin PEVK domain measured with optical tweezers. Biophysical Journal, 93(6), 2102-2109. https://doi.org/10.1529/biophysj.107.106153

Cooke, R. (2004). The sliding filament model: 1972-2004. The Journal of General Physiology, 123(6), 643-656. https://doi.org/10.1085/jgp.200409089

Corrado, B, Albano, M., Caprio, M. G., Di Luise, C., Sansone, M., Servodidio, V., … Servodio Iammarrone, C. (2019). Usefulness of point shear wave elastography to assess the effects of extracorporeal shockwaves on spastic muscles in children with cerebral palsy: An uncontrolled experimental study. Muscles, Ligaments and Tendons Journal, 9(1), 124-130. https://doi.org/10.32098/mltj.01.2019.04

Corrado, Bruno, Ciardi, G., Fortunato, L., & Iammarrone, C. (2019). Burnout syndrome among Italian physiotherapists: a cross-sectional study. European Journal of Physiotherapy, 1-6. https://doi.org/10.1080/21679169.2018.1536765

Corrado, Bruno, Ciardi, G., & Iammarrone, C. S. (2019). Rehabilitation management of pompe disease, from childhood trough adulthood: A systematic review of the literature. Neurology International, 11(2), 7983. https://doi.org/10.4081/ni.2019.7983

Corrado, Bruno, Mazzuoccolo, G., Liguori, L., Chirico, V. A., Costanzo, M., Bonini, I., … Curci, L. (2019). Treatment of lateral epicondylitis with collagen injections: A pilot study. Muscles, Ligaments and Tendons Journal, 9(4), 584-589. https://doi.org/10.32098/mltj.04.2019.14

Croisier, J. L., & Crielaard, J. M. (2001). [Isokinetic exercise and sports injuries]. Revue medicale de Liege, 56(5), 360-368.

Davies, G., Riemann, B. L., & Manske, R. (2015). Current concepts of plyometric exercise. International Journal of Sports Physical Therapy, 10(6), 760-786.

Dewa, C. S., Loong, D., Bonato, S., Thanh, N. X., & Jacobs, P. (2014). How does burnout affect physician productivity? A systematic literature review. BMC Health Services Research, 14(1), 325. https://doi.org/10.1186/1472-6963-14-325

Exeter, D., & Connell, D. A. (2010). Skeletal muscle: Functional anatomy and pathophysiology. Seminars in Musculoskeletal Radiology, 14(2), 97-105. https://doi.org/10.1055/s-0030-1253154

Freiburg, A., & Gautel, M. (1996). A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. European Journal of Biochemistry, 235(1-2), 317-323. https://doi.org/10.1111/j.1432-1033.1996.00317.x

Frontera, W. R., & Ochala, J. (2015). Skeletal muscle: a brief review of structure and function. Calcified Tissue International, 96(3), 183-195. https://doi.org/10.1007/s00223-014-9915-y

Funatsu, T., Kono, E., Higuchi, H., Kimura, S., Ishiwata, S., Yoshioka, T., … Tsukita, S. (1993). Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. The Journal of Cell Biology, 120(3), 711-724. https://doi.org/10.1083/jcb.120.3.711

Galińska-Rakoczy, A., Engel, P., Xu, C., Jung, H. S., Craig, R., Tobacman, L. S., & Lehman, W. (2008). Structural Basis for the Regulation of Muscle Contraction by Troponin and Tropomyosin. Journal of Molecular Biology, 379(5), 929-935. https://doi.org/10.1016/j.jmb.2008.04.062

Gash, M. C., & Varacallo, M. (2018). Physiology, Muscle Contraction. StatPearls. StatPearls Publishing.

Gilbert, R., Cohen, J. A., Pardo, S., Basu, A., & Fischman, D. A. (1999). Identification of the A-band localization domain of myosin binding proteins C and H (MyBP-C, MyBP-H) in skeletal muscle. Journal of Cell Science, 112 ( Pt 1, 69-79.

Gillies, A. R., & Lieber, R. L. (2011, September). Structure and function of the skeletal muscle extracellular matrix. Muscle and Nerve. NIH Public Access. https://doi.org/10.1002/mus.22094

Gokhin, D. S., Ochala, J., Domenighetti, A. A., & Fowler, V. M. (2015). Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle. Development (Cambridge, England), 142(24), 4351-4362. https://doi.org/10.1242/dev.129171

Gordon, A. M., Huxley, A. F., & Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. The Journal of Physiology, 184(1), 170-192. https://doi.org/10.1113/jphysiol.1966.sp007909

Grzelkowska-Kowalczyk, K. (2016). The Importance of Extracellular Matrix in Skeletal Muscle Development and Function. In Composition and Function of the Extracellular Matrix in the Human Body. InTech. https://doi.org/10.5772/62230

Gustafsson, H., DeFreese, J. D., & Madigan, D. J. (2017). Athlete burnout: review and recommendations. Current Opinion in Psychology, 16, 109-113. https://doi.org/10.1016/j.copsyc.2017.05.002

Hamid, M. S. A., Yusof, A., & Mohamed Ali, M. R. (2014). Platelet-rich plasma (PRP) for acute muscle injury: A systematic review. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0090538

Haycock, J. W., MacNeil, S., Jones, P., Harris, J. B., & Mantle, D. (1996). Oxidative damage to muscle protein in Duchenne muscular dystrophy. Neuroreport, 8(1), 357-361. https://doi.org/10.1097/00001756-199612200-00070

Herzog, W., & Leonard, T. R. (2002a). Force enhancement following stretching of skeletal muscle: a new mechanism. The Journal of Experimental Biology, 205(Pt 9), 1275-1283.

Herzog, W., & Leonard, T. R. (2002b). Force enhancement following stretching of skeletal muscle. Journal of Experimental Biology, 205(9), 1275 LP - 1283.

Horowits, R., Kempner, E. S., Bisher, M. E., & Podolsky, R. J. (1986). A physiological role for titin and nebulin in skeletal muscle. Nature, 323(6084), 160-164. https://doi.org/10.1038/323160a0

Humphrey, J. D., Dufresne, E. R., & Schwartz, M. A. (2014, December 11). Mechanotransduction and extracellular matrix homeostasis. Nature Reviews Molecular Cell Biology. Nature Publishing Group. https://doi.org/10.1038/nrm3896

Huxley, A. F. (1957). Muscle structure and theories of contraction. Progress in Biophysics and Biophysical Chemistry, 7, 255-318. https://doi.org/10.1016/S0096-4174(18)30128-8

Huxley, A. F., & Niedergerke, R. (1954). Structural changes in muscle during contraction: Interference microscopy of living muscle fibres. Nature, 173(4412), 971-973. https://doi.org/10.1038/173971a0

Huxley, H. E. (1957). The double array of filaments in cross-striated muscle. The Journal of Biophysical and Biochemical Cytology, 3(5), 631-648. https://doi.org/10.1083/jcb.3.5.631

Huxley, H., & Hanson, J. (1954). Changes in the Cross-striations of muscle during contraction and stretch and their structural interpretation. Nature, 173(4412), 973-976. https://doi.org/10.1038/173973a0

Jiménez-Reyes, P., Samozino, P., Brughelli, M., & Morin, J. B. (2017). Effectiveness of an individualized training based on force-velocity profiling during jumping. Frontiers in Physiology, 7(JAN), 677. https://doi.org/10.3389/fphys.2016.00677

Jones, D. A., & Rutherford, O. M. (1987). Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. The Journal of Physiology, 391(1), 1-11. https://doi.org/10.1113/jphysiol.1987.sp016721

Lieber, R. L. (2009). Skeletal Muscle Structure, Function, and Plasticity: The Physiological Basis of Rehabilitation: Amazon.it: Lieber, Richard L.: Libri in altre lingue. (Wolters Kluwer Health - Lippincott Williams & Wilkins, Ed.) (3rd ed.).

Linke, W. A. (2018). Titin Gene and Protein Functions in Passive and Active Muscle. Annual Review of Physiology, 80(1), 389-411. https://doi.org/10.1146/annurev-physiol-021317-121234

Linke, W. A., Kulke, M., Li, H., Fujita-Becker, S., Neagoe, C., Manstein, D. J., … Fernandez, J. M. (2002). PEVK domain of titin: An entropic spring with actin-binding properties. In Journal of Structural Biology (Vol. 137, pp. 194-205). Academic Press Inc. https://doi.org/10.1006/jsbi.2002.4468

Loiacono, C., Palermi, S., Massa, B., Belviso, I., Romano, V., Gregorio, A. Di, … Sacco, A. M. (2019). Tendinopathy: Pathophysiology, Therapeutic Options, and Role of Nutraceutics. A Narrative Literature Review. Medicina (Kaunas, Lithuania), 55(8). https://doi.org/10.3390/medicina55080447

Lombardi, V., & Piazzesi, G. (1990). The contractile response during steady lengthening of stimulated frog muscle fibres. The Journal of Physiology, 431(1), 141-171. https://doi.org/10.1113/jphysiol.1990.sp018324

Mazzeo, F., Tafuri, D., & Montesano, P. (2020). Respiratory endurance, pulmonary drugs and sport performance: An analysis in a sample of amateur soccer athletes. Sport Science, 13(1), 11-16.

Montesano, P., Masala, D., Silvestro, M., Cipriani, G., Tafuri, D., & Mazzeo, F. (2020). Effects of combined training program, controlled diet and drugs on middle-distance amateur runners : A pilot study. Sport Science, 13(1), 17-22.

Montesano, P., Tafuri, D., & Mazzeo, F. (2013). Improvement of the motor performance difference in athletes of weelchair Basketball. Journal of Physical Education and Sport, 13, 362-370. https://doi.org/10.7752/jpes.2013.03058

Morgan, D. L. (1990). New insights into the behavior of muscle during active lengthening. Biophysical Journal, 57(2), 209-221. https://doi.org/10.1016/S0006-3495(90)82524-8

Morgan, David L, & Proske, U. (2004). Popping sarcomere hypothesis explains stretch-induced muscle damage. In Clinical and Experimental Pharmacology and Physiology (Vol. 31, pp. 541-545). https://doi.org/10.1111/j.1440-1681.2004.04029.x

Mukund, K., & Subramaniam, S. (2020, August 13). Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. Wiley-Blackwell. https://doi.org/10.1002/wsbm.1462

Naugle, K. M., Naugle, K. E., Fillingim, R. B., & Riley, J. L. (2014). Isometric exercise as a test of pain modulation: Effects of experimental pain test, psychological variables, and sex. Pain Medicine (United States), 15(4), 692-701. https://doi.org/10.1111/pme.12312

Nishikawa, K. C., Lindstedt, S. L., & LaStayo, P. C. (2018, July 1). Basic science and clinical use of eccentric contractions: History and uncertainties. Journal of Sport and Health Science. Elsevier B.V. https://doi.org/10.1016/j.jshs.2018.06.002

Nishikawa, K. C., Monroy, J. A., Uyeno, T. E., Yeo, S. H., Pai, D. K., & Lindstedt, S. L. (2012). Is titin a "winding filament"? A new twist on muscle contraction. Proceedings of the Royal Society B: Biological Sciences, 279(1730), 981-990. https://doi.org/10.1098/rspb.2011.1304

Nishikawa, K., Monroy, J., Uyeno, T., Yeo, S., Pai, D., & Lindstedt, S. (2011). Is titin a "winding filament"? A new twist on muscle contraction. Proceedings. Biological Sciences / The Royal Society, 279, 981-990. https://doi.org/10.1098/rspb.2011.1304

O'Neill, S., Watson, P. J., & Barry, S. (2015). Why are eccentric exercises effective for achilles tendinopathy? International Journal of Sports Physical Therapy, 10(4), 552-562.

Padulo, J., Laffaye, G., Chamari, K., & Concu, A. (2013, July). Concentric and Eccentric: Muscle Contraction or Exercise? Sports Health. SAGE Publications. https://doi.org/10.1177/1941738113491386

Palermi, S., Sacco, A. M., Belviso, I., Romano, V., Montesano, P., Corrado, B., & Sirico, F. (2020). Guidelines for physical activity-a cross-sectional study to assess their application in the general population. Have we achieved our goal? International Journal of Environmental Research and Public Health, 17(11), 1-14. https://doi.org/10.3390/ijerph17113980

Rice, D. A., McNair, P. J., Lewis, G. N., & Dalbeth, N. (2014). Quadriceps arthrogenic muscle inhibition: The effects of experimental knee joint effusion on motor cortex excitability. Arthritis Research and Therapy, 16(1). https://doi.org/10.1186/s13075-014-0502-4

Rio, E., Kidgell, D., Purdam, C., Gaida, J., Moseley, G. L., Pearce, A. J., & Cook, J. (2015). Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy. British Journal of Sports Medicine, 49(19), 1277-1283. https://doi.org/10.1136/bjsports-2014-094386

Servodio Iammarrone, C., Cadossi, M., Sambri, A., Grosso, E., Corrado, B., & Servodio Iammarrone, F. (2016). Is there a role of pulsed electromagnetic fields in management of patellofemoral pain syndrome? Randomized controlled study at one year follow-up. Bioelectromagnetics, 37(2), 81-88. https://doi.org/10.1002/bem.21953

Sirico, F., Ricca, F., DI Meglio, F., Nurzynska, D., Castaldo, C., Spera, R., & Montagnani, S. (2017). Local corticosteroid versus autologous blood injections in lateral epicondylitis: meta-analysis of randomized controlled trials. European Journal of Physical and Rehabilitation Medicine, 53(3), 483-491. https://doi.org/10.23736/S1973-9087.16.04252-0

Sonnery-Cottet, B., Saithna, A., Quelard, B., Daggett, M., Borade, A., Ouanezar, H., … Blakeney, W. G. (2019). Arthrogenic muscle inhibition after ACL reconstruction: a scoping review of the efficacy of interventions. British Journal of Sports Medicine, 53(5), 289 LP - 298. https://doi.org/10.1136/bjsports-2017-098401

Spera, R., Belviso, I., Sirico, F., Palermi, S., Massa, B., Mazzeo, F., & Montesano, P. (2019). Jump and balance test in judo athletes with or without visual impairments. Journal of Human Sport and Exercise, 14(Proc4), S937-S947. https://doi.org/10.14198/jhse.2019.14.Proc4.56

Sweeney, H. L., & Hammers, D. W. (2018). Muscle Contraction. Cold Spring Harbor Perspectives in Biology, 10(2). https://doi.org/10.1101/cshperspect.a023200

Tesch, P. A., Fernandez-Gonzalo, R., & Lundberg, T. R. (2017, April 27). Clinical applications of iso-inertial, eccentric-overload (YoYoTM) resistance exercise. Frontiers in Physiology. Frontiers Media S.A. https://doi.org/10.3389/fphys.2017.00241

Vola, E. A., Albano, M., Di Luise, C., Servodidio, V., Sansone, M., Russo, S., … Vallone, G. (2018). Use of ultrasound shear wave to measure muscle stiffness in children with cerebral palsy. Journal of Ultrasound, 21(3), 241-247. https://doi.org/10.1007/s40477-018-0313-6

Wang, K., McClure, J., & Tu, A. (1979). Titin: Major myofibrillar components of striated muscle. Proceedings of the National Academy of Sciences of the United States of America, 76(8), 3698-3702. https://doi.org/10.1073/pnas.76.8.3698

Yamasaki, R., Berri, M., Wu, Y., Trombitás, K., McNabb, M., Kellermayer, M. S., … Granzier, H. (2001). Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Biophysical Journal, 81(4), 2297-2313. https://doi.org/10.1016/S0006-3495(01)75876-6

Zot, A. S., & Potter, J. D. (1987). Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annual Review of Biophysics and Biophysical Chemistry. Annu Rev Biophys Biophys Chem. https://doi.org/10.1146/annurev.bb.16.060187.002535

Published

2020-09-28

How to Cite

Montesano, P., palermi, S., Massa, B., & Mazzeo, F. (2020). From “sliding” to “winding” filaments theory: A narrative review of mechanisms behind skeletal muscle contraction. Journal of Human Sport and Exercise, 15(3proc), S806-S814. Retrieved from https://www.jhse.ua.es/article/view/2020-v15-n3-proc-sliding-winding-filaments-theory-review-skeleta

Most read articles by the same author(s)

1 2 > >>