Journal of Human Sport and Exercise

The effects of beta (2)-adrenergic receptors activation on the cardiovascular system and on the skeletal muscle: A narrative review

Veronica Romano, Domenico Cozzolino, Giorgio Zinno, Stefano Palermi, Domiziano Tarantino



Beta(2)-adrenergic receptors (adrenoceptors) are activated by the catecholamines norepinephrine and epinephrine. Adrenoceptors are found in different tissues, such as smooth muscle, skeletal muscle and myocardium. Stimulation of adrenoceptors is implicated in several physiological functions in the body, such as bronchodilation, increased perfusion and vasodilation. The latters, together with increased muscular mass and contraction speed, facilitate muscle’s motility and contraction. In the cardiovascular system, the activation of adrenoceptors increases heart muscle contraction, cardiac output and heart rate. Some studies also suggested a cardioprotective role of the stimulation of adrenoceptors. Beta(2)-adrenergic receptors agonists, principally divided in long-acting beta(2) agonists (LABAs) and short-acting beta(2) agonists (SABAs), are primarily used to treat asthma and other pulmonary disorders. Beta(2)-adrenergic receptors activation has been correlated with anabolic properties and muscular hypertrophy with the use of oral clenbuterol, as well as intravenous albuterol. Given these anabolic, lipolytic and performance-enhancing effects, LABAs are frequently abused by athletes. For this reason, most of these drugs are banned by the World Anti-Doping Agency, or admissible only with limitations. The aim of this narrative review is to report the results of some recent studies about the effects of beta(2)-adrenergic receptors activation on the cardiovascular system and on the skeletal muscle.


Beta(2)-adrenergic receptors; Beta(2)-agonist; Catecholamines; Cardiovascular system; Skeletal muscle; Doping


Agarwal, S. R., MacDougall, D. A., Tyser, R., Pugh, S. D., Calaghan, S. C., & Harvey, R. D. (2011). Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 50(3), 500-509.

Aránguiz-Urroz, P., Canales, J., Copaja, M., Troncoso, R., Vicencio, J. M., Carrillo, C., Lara, H., Lavandero, S., & Díaz-Araya, G. (2011). Beta2-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1812(1), 23-31.

Belviso, I., Angelini, F., Di Meglio, F., Picchio, V., Sacco, AM., Nocella, C., Romano, V., Nurzynska, D., Frati, G., Maiello, C., Messina, E., Montagnani, S., Pagano, F., Castaldo, C., Chimenti, I. (2020a). The Microenvironment of Decellularized Extracellular Matrix from Heart Failure Myocardium Alters the Balance between Angiogenic and Fibrotic Signals from Stromal Primitive Cells. Int J Mol Sci, 21(21):7903.

Belviso, I., Romano, V., Sacco, AM., Ricci, G., Massai, D., Cammarota, M., Catizone, A., Schiraldi, C., Nurzynska, D., Terzini, M., Aldieri, A., Serino, G., Schonauer, F., Sirico, F., D'Andrea, F., Montagnani, S., Di Meglio, F., Castaldo, C. (2020b). Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration. Front Bioeng Biotechnol, 20;8:229.

Berdeaux, R., & Stewart, R. (2012). cAMP signaling in skeletal muscle adaptation: Hypertrophy, metabolism, and regeneration. American Journal of Physiology. Endocrinology and Metabolism, 303(1), E1-17.

Bernstein, D., Fajardo, G., & Zhao, M. (2011). The role of β-adrenergic receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Progress in Pediatric Cardiology, 31(1), 35-38.

Bristow, M. R., Ginsburg, R., Umans, V., Fowler, M., Minobe, W., Rasmussen, R., Zera, P., Menlove, R., Shah, P., & Jamieson, S. (1986). Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circulation Research, 59(3), 297-309.

Brodde, O.-E., Bruck, H., & Leineweber, K. (2006). Cardiac adrenoceptors: Physiological and pathophysiological relevance. Journal of Pharmacological Sciences, 100(5), 323-337.

Busquets, S., Figueras, M. T., Fuster, G., Almendro, V., Moore-Carrasco, R., Ametller, E., Argilés, J. M., & López-Soriano, F. J. (2004). Anticachectic effects of formoterol: A drug for potential treatment of muscle wasting. Cancer Research, 64(18), 6725-6731.

Castaldo, C., Di Meglio, F., Miraglia, R., Sacco, AM., Romano, V., Bancone, C., Della Corte, A., Montagnani, S., Nurzynska, D. (2013). Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart. Biomed Res Int, 2013:352370.

Cazzola, M., Spina, D., & Matera, M. G. (1997). The use of bronchodilators in stable chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics, 10(3), 129-144.

Chikazawa, M., & Sato, R. (2018a). Identification of Functional Food Factors as β2-Adrenergic Receptor Agonists and Their Potential Roles in Skeletal Muscle. Journal of Nutritional Science and Vitaminology, 64(1), 68-74.

Chikazawa, M., & Sato, R. (2018b). Identification of a Novel Function of Resveratrol and Genistein as a Regulator of β2 -Adrenergic Receptor Expression in Skeletal Muscle Cells and Characterization of Promoter Elements Required for Promoter Activation. Molecular Nutrition & Food Research, 62(22), e1800530.

Chisholm, K. M., Chang, K. W., Truong, M. T., Kwok, S., West, R. B., & Heerema-McKenney, A. E. (2012). β-Adrenergic receptor expression in vascular tumors. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 25(11), 1446-1451.

Choo, J. J., Horan, M. A., Little, R. A., & Rothwell, N. J. (1992). Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation. The American Journal of Physiology, 263(1 Pt 1), E50-56.

D'Angelo, G., Lee, H., & Weiner, R. I. (1997). CAMP-dependent protein kinase inhibits the mitogenic action of vascular endothelial growth factor and fibroblast growth factor in capillary endothelial cells by blocking Raf activation. Journal of Cellular Biochemistry, 67(3), 353-366.<353::AID-JCB7>3.0.CO;2-V

Davis, E., Loiacono, R., & Summers, R. J. (2008). The rush to adrenaline: Drugs in sport acting on the β-adrenergic system. British Journal of Pharmacology, 154(3), 584-597.

Fajardo, G., Zhao, M., Berry, G., Wong, L.-J., Mochly-Rosen, D., & Bernstein, D. (2011). Β2-adrenergic receptors mediate cardioprotection through crosstalk with mitochondrial cell death pathways. Journal of Molecular and Cellular Cardiology, 51(5), 781-789.

Freedman, N. J., & Lefkowitz, R. J. (2004). Anti-β1-adrenergic receptor antibodies and heart failure: Causation, not just correlation. Journal of Clinical Investigation, 113(10), 1379-1382.

Gonçalves, D. A. P., Silveira, W. A., Lira, E. C., Graça, F. A., Paula-Gomes, S., Zanon, N. M., Kettelhut, I. C., & Navegantes, L. C. C. (2011). Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. American Journal of Physiology-Endocrinology and Metabolism, 302(1), E123-E133.

Guimarães, S., & Moura, D. (2001). Vascular adrenoceptors: An update. Pharmacological Reviews, 53(2), 319-356.

Head, B. P., Patel, H. H., Roth, D. M., Lai, N. C., Niesman, I. R., Farquhar, M. G., & Insel, P. A. (2005). G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. The Journal of Biological Chemistry, 280(35), 31036-31044.

Hostrup, M., Kalsen, A., Onslev, J., Jessen, S., Haase, C., Habib, S., Ørtenblad, N., Backer, V., & Bangsbo, J. (2015). Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men. Journal of Applied Physiology (Bethesda, Md.: 1985), 119(5), 475-486.

Iaccarino, G., Ciccarelli, M., Sorriento, D., Galasso, G., Campanile, A., Santulli, G., Cipolletta, E., Cerullo, V., Cimini, V., Altobelli, G. G., Piscione, F., Priante, O., Pastore, L., Chiariello, M., Salvatore, F., Koch, W. J., & Trimarco, B. (2005). Ischemic neoangiogenesis enhanced by beta2-adrenergic receptor overexpression: A novel role for the endothelial adrenergic system. Circulation Research, 97(11), 1182-1189.

Jean-Baptiste, G., Yang, Z., Khoury, C., Gaudio, S., & Greenwood, M. T. (2005). Peptide and non-peptide G-protein coupled receptors (GPCRs) in skeletal muscle. Peptides, 26(8), 1528-1536.

Jenkins, N. D. M., Colquhoun, R. J., Tomko, P. M., Gradnigo, T., Magrini, M. A., Muddle, T. W. D., Fleming, S., Ferrell, M., & El-Sohemy, A. (2018). Genetic variant in the β2 -adrenergic receptor (Arg16Gly) influences fat-free mass, muscle strength and motor unit behaviour in young men. Experimental Physiology, 103(12), 1645-1655.

Jessen, S., Onslev, J., Lemminger, A., Backer, V., Bangsbo, J., & Hostrup, M. (2018). Hypertrophic effect of inhaled beta2 -agonist with and without concurrent exercise training: A randomized controlled trial. Scandinavian Journal of Medicine & Science in Sports, 28(10), 2114-2122.

Joassard, O. R., Amirouche, A., Gallot, Y. S., Desgeorges, M. M., Castells, J., Durieux, A.-C., Berthon, P., & Freyssenet, D. G. (2013). Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle. The International Journal of Biochemistry & Cell Biology, 45(11), 2444-2455.

Kamalakkannan, G., Petrilli, C. M., George, I., LaManca, J., McLaughlin, B. T., Shane, E., Mancini, D. M., & Maybaum, S. (2008). Clenbuterol increases lean muscle mass but not endurance in patients with chronic heart failure. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation, 27(4), 457-461.

Kim, J., Grotegut, C. A., Wisler, J. W., Li, T., Mao, L., Chen, M., Chen, W., Rosenberg, P. B., Rockman, H. A., & Lefkowitz, R. J. (2018). β-arrestin 1 regulates β2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility. Skeletal Muscle, 8.

Kim, J., Grotegut, C. A., Wisler, J. W., Mao, L., Rosenberg, P. B., Rockman, H. A., & Lefkowitz, R. J. (2020). The β-arrestin-biased β-adrenergic receptor blocker carvedilol enhances skeletal muscle contractility. Proceedings of the National Academy of Sciences, 117(22), 12435-12443.

Koopman, R., Gehrig, S. M., Léger, B., Trieu, J., Walrand, S., Murphy, K. T., & Lynch, G. S. (2010). Cellular mechanisms underlying temporal changes in skeletal muscle protein synthesis and breakdown during chronic {beta}-adrenoceptor stimulation in mice. The Journal of Physiology, 588(Pt 23), 4811-4823.

Koziczak-Holbro, M., Rigel, D. F., Dumotier, B., Sykes, D. A., Tsao, J., Nguyen, N.-H., Bösch, J., Jourdain, M., Flotte, L., Adachi, Y., Kiffe, M., Azria, M., Fairhurst, R. A., Charlton, S. J., Richardson, B. P., Lach-Trifilieff, E., Glass, D. J., Ullrich, T., & Hatakeyama, S. (2019). Pharmacological Characterization of a Novel 5-Hydroxybenzothiazolone-Derived β2-Adrenoceptor Agonist with Functional Selectivity for Anabolic Effects on Skeletal Muscle Resulting in a Wider Cardiovascular Safety Window in Preclinical Studies. The Journal of Pharmacology and Experimental Therapeutics, 369(2), 188-199.

Kuramoto, N., Nomura, K., Kohno, D., Kitamura, T., Karsenty, G., Hosooka, T., & Ogawa, W. (2021). Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load. Scientific Reports, 11(1), 3447.

Le Panse, B., Collomp, K., Portier, H., Lecoq, A.-M., Jaffre, C., Beaupied, H., Richard, O., Benhamou, L., De Ceaurriz, J., & Courteix, D. (2005). Effects of short-term salbutamol ingestion during a Wingate test. International Journal of Sports Medicine, 26(7), 518-523.

Li, Y., Yuan, H., Sun, L., Zhou, Q., Yang, F., Yang, Z., & Liu, D. (2019). β2-Adrenergic Receptor Gene Polymorphisms Are Associated with Cardiovascular Events But not All-Cause Mortality in Coronary Artery Disease Patients: A Meta-Analysis of Prospective Studies. Genetic Testing and Molecular Biomarkers, 23(2), 124-137.

Meszaros, J. G., Gonzalez, A. M., Endo-Mochizuki, Y., Villegas, S., Villarreal, F., & Brunton, L. L. (2000). Identification of G protein-coupled signaling pathways in cardiac fibroblasts: Cross talk between G(q) and G(s). American Journal of Physiology. Cell Physiology, 278(1), C154-162.

Minetti, G. C., Feige, J. N., Rosenstiel, A., Bombard, F., Meier, V., Werner, A., Bassilana, F., Sailer, A. W., Kahle, P., Lambert, C., Glass, D. J., & Fornaro, M. (2011). Gαi2 Signaling Promotes Skeletal Muscle Hypertrophy, Myoblast Differentiation, and Muscle Regeneration. Science Signaling, 4(201), ra80-ra80.

Navegantes, L. C., Resano, N. M. Z., Baviera, A. M., Migliorini, R. H., & Kettelhut, I. C. (2004). Effect of sympathetic denervation on the rate of protein synthesis in rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 286(4), E642-647.

Navegantes, L. C., Resano, N. M., Migliorini, R. H., & Kettelhut, I. C. (2000). Role of adrenoceptors and cAMP on the catecholamine-induced inhibition of proteolysis in rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 279(3), E663-668.

Navegantes, L. C., Resano, N. M., Migliorini, R. H., & Kettelhut IC, null. (2001). Catecholamines inhibit Ca(2+)-dependent proteolysis in rat skeletal muscle through beta(2)-adrenoceptors and cAMP. American Journal of Physiology. Endocrinology and Metabolism, 281(3), E449-454.

Noh, H., Yu, M. R., Kim, H. J., Lee, J. H., Park, B.-W., Wu, I.-H., Matsumoto, M., & King, G. L. (2017). Beta 2-adrenergic receptor agonists are novel regulators of macrophage activation in diabetic renal and cardiovascular complications. Kidney International, 92(1), 101-113.

Pellegrino, M. A., D'Antona, G., Bortolotto, S., Boschi, F., Pastoris, O., Bottinelli, R., Polla, B., & Reggiani, C. (2004). Clenbuterol antagonizes glucocorticoid-induced atrophy and fibre type transformation in mice. Experimental Physiology, 89(1), 89-100.

Rang, H. P., Dale, M. M., Ritter, J. M., & Moore, P. (2003). Pharmacology. Churchill Livingstone.

Rybin, V. O., Xu, X., Lisanti, M. P., & Steinberg, S. F. (2000). Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. The Journal of Biological Chemistry, 275(52), 41447-41457.

Santos, I. N., & Spadari-Bratfisch, R. C. (2006). Stress and cardiac beta adrenoceptors. Stress (Amsterdam, Netherlands), 9(2), 69-84.

Sato, S., Shirato, K., Tachiyashiki, K., & Imaizumi, K. (2011). Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy. Journal of Biomedicine and Biotechnology, 2011.

Scholpa, N. E., Simmons, E. C., Tilley, D. G., & Schnellmann, R. G. (2019). Β2-adrenergic receptor-mediated mitochondrial biogenesis improves skeletal muscle recovery following spinal cord injury. Experimental Neurology, 322, 113064.

Spadari, R. C., Cavadas, C., de Carvalho, A. E. T. S., Ortolani, D., de Moura, A. L., & Vassalo, P. F. (2018). Role of Beta-adrenergic Receptors and Sirtuin Signaling in the Heart During Aging, Heart Failure, and Adaptation to Stress. Cellular and Molecular Neurobiology, 38(1), 109-120.

Storch, C. H., & Hoeger, P. H. (2010). Propranolol for infantile haemangiomas: Insights into the molecular mechanisms of action. The British Journal of Dermatology, 163(2), 269-274.

Toledo, M., Busquets, S., Penna, F., Zhou, X., Marmonti, E., Betancourt, A., Massa, D., López-Soriano, F. J., Han, H. Q., & Argilés, J. M. (2016). Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and β-2 agonist. International Journal of Cancer, 138(8), 2021-2029.

Wang, Q., Liu, Y., Fu, Q., Xu, B., Zhang, Y., Kim, S., Tan, R., Barbagallo, F., West, T., Anderson, E., Wei, W., Abel, E. D., & Xiang, Y. K. (2017). Inhibiting Insulin-Mediated β2-Adrenergic Receptor Activation Prevents Diabetes-Associated Cardiac Dysfunction. Circulation, 135(1), 73-88.

Woo, A. Y. H., & Xiao, R. (2012). β-Adrenergic receptor subtype signaling in heart: From bench to bedside. Acta Pharmacologica Sinica, 33(3), 335-341.

Wright, P. T., Nikolaev, V. O., O'Hara, T., Diakonov, I., Bhargava, A., Tokar, S., Schobesberger, S., Shevchuk, A. I., Sikkel, M. B., Wilkinson, R., Trayanova, N. A., Lyon, A. R., Harding, S. E., & Gorelik, J. (2014). Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. Journal of Molecular and Cellular Cardiology, 67, 38-48.

Xia, K., Ding, R., Zhang, Z., Li, W., Shang, X., Yang, X., Wang, L., & Zhang, Q. (2017). The association of eight potentially functional polymorphisms in five adrenergic receptor-encoding genes with myocardial infarction risk in Han Chinese. Gene, 624, 43-49.

Xiang, Y., Rybin, V. O., Steinberg, S. F., & Kobilka, B. (2002). Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. The Journal of Biological Chemistry, 277(37), 34280-34286.

Yimlamai, T., Dodd, S. L., Borst, S. E., & Park, S. (2005). Clenbuterol induces muscle-specific attenuation of atrophy through effects on the ubiquitin-proteasome pathway. Journal of Applied Physiology (Bethesda, Md.: 1985), 99(1), 71-80.

Zhu, W. Z., Zheng, M., Koch, W. J., Lefkowitz, R. J., Kobilka, B. K., & Xiao, R. P. (2001). Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1607-1612.

Ziegler, O., Anderson, K., Liu, Y., Ehsan, A., Fingleton, J., Sodha, N., Feng, J., & Sellke, F. W. (2020). Skeletal muscle microvasculature response to β-adrenergic stimuli is diminished with cardiac surgery. Surgery, 167(2), 493-498.


Copyright (c) 2021 Journal of Human Sport and Exercise

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.