Journal of Human Sport and Exercise

The effects of beta (2)-adrenergic receptors activation on the cardiovascular system and on the skeletal muscle: A narrative review

Veronica Romano, Domenico Cozzolino, Giorgio Zinno, Stefano Palermi, Domiziano Tarantino

DOI: https://doi.org/10.14198/jhse.2021.16.Proc3.53

Abstract

Beta(2)-adrenergic receptors (adrenoceptors) are activated by the catecholamines norepinephrine and epinephrine. Adrenoceptors are found in different tissues, such as smooth muscle, skeletal muscle and myocardium. Stimulation of adrenoceptors is implicated in several physiological functions in the body, such as bronchodilation, increased perfusion and vasodilation. The latters, together with increased muscular mass and contraction speed, facilitate muscle’s motility and contraction. In the cardiovascular system, the activation of adrenoceptors increases heart muscle contraction, cardiac output and heart rate. Some studies also suggested a cardioprotective role of the stimulation of adrenoceptors. Beta(2)-adrenergic receptors agonists, principally divided in long-acting beta(2) agonists (LABAs) and short-acting beta(2) agonists (SABAs), are primarily used to treat asthma and other pulmonary disorders. Beta(2)-adrenergic receptors activation has been correlated with anabolic properties and muscular hypertrophy with the use of oral clenbuterol, as well as intravenous albuterol. Given these anabolic, lipolytic and performance-enhancing effects, LABAs are frequently abused by athletes. For this reason, most of these drugs are banned by the World Anti-Doping Agency, or admissible only with limitations. The aim of this narrative review is to report the results of some recent studies about the effects of beta(2)-adrenergic receptors activation on the cardiovascular system and on the skeletal muscle.


Keywords

Beta(2)-adrenergic receptors; Beta(2)-agonist; Catecholamines; Cardiovascular system; Skeletal muscle; Doping

References

Agarwal, S. R., MacDougall, D. A., Tyser, R., Pugh, S. D., Calaghan, S. C., & Harvey, R. D. (2011). Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 50(3), 500-509. https://doi.org/10.1016/j.yjmcc.2010.11.015

Aránguiz-Urroz, P., Canales, J., Copaja, M., Troncoso, R., Vicencio, J. M., Carrillo, C., Lara, H., Lavandero, S., & Díaz-Araya, G. (2011). Beta2-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1812(1), 23-31. https://doi.org/10.1016/j.bbadis.2010.07.003

Belviso, I., Angelini, F., Di Meglio, F., Picchio, V., Sacco, AM., Nocella, C., Romano, V., Nurzynska, D., Frati, G., Maiello, C., Messina, E., Montagnani, S., Pagano, F., Castaldo, C., Chimenti, I. (2020a). The Microenvironment of Decellularized Extracellular Matrix from Heart Failure Myocardium Alters the Balance between Angiogenic and Fibrotic Signals from Stromal Primitive Cells. Int J Mol Sci, 21(21):7903. https://doi.org/10.3390/ijms21217903

Belviso, I., Romano, V., Sacco, AM., Ricci, G., Massai, D., Cammarota, M., Catizone, A., Schiraldi, C., Nurzynska, D., Terzini, M., Aldieri, A., Serino, G., Schonauer, F., Sirico, F., D'Andrea, F., Montagnani, S., Di Meglio, F., Castaldo, C. (2020b). Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration. Front Bioeng Biotechnol, 20;8:229. http://doi.org/10.3389/fbioe.2020.00229

Berdeaux, R., & Stewart, R. (2012). cAMP signaling in skeletal muscle adaptation: Hypertrophy, metabolism, and regeneration. American Journal of Physiology. Endocrinology and Metabolism, 303(1), E1-17. https://doi.org/10.1152/ajpendo.00555.2011

Bernstein, D., Fajardo, G., & Zhao, M. (2011). The role of β-adrenergic receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Progress in Pediatric Cardiology, 31(1), 35-38. https://doi.org/10.1016/j.ppedcard.2010.11.007

Bristow, M. R., Ginsburg, R., Umans, V., Fowler, M., Minobe, W., Rasmussen, R., Zera, P., Menlove, R., Shah, P., & Jamieson, S. (1986). Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circulation Research, 59(3), 297-309. https://doi.org/10.1161/01.res.59.3.297

Brodde, O.-E., Bruck, H., & Leineweber, K. (2006). Cardiac adrenoceptors: Physiological and pathophysiological relevance. Journal of Pharmacological Sciences, 100(5), 323-337. https://doi.org/10.1254/jphs.crj06001x

Busquets, S., Figueras, M. T., Fuster, G., Almendro, V., Moore-Carrasco, R., Ametller, E., Argilés, J. M., & López-Soriano, F. J. (2004). Anticachectic effects of formoterol: A drug for potential treatment of muscle wasting. Cancer Research, 64(18), 6725-6731. https://doi.org/10.1158/0008-5472.CAN-04-0425

Castaldo, C., Di Meglio, F., Miraglia, R., Sacco, AM., Romano, V., Bancone, C., Della Corte, A., Montagnani, S., Nurzynska, D. (2013). Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart. Biomed Res Int, 2013:352370. http://doi.org/10.1155/2013/352370

Cazzola, M., Spina, D., & Matera, M. G. (1997). The use of bronchodilators in stable chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics, 10(3), 129-144. https://doi.org/10.1006/pupt.1997.0087

Chikazawa, M., & Sato, R. (2018a). Identification of Functional Food Factors as β2-Adrenergic Receptor Agonists and Their Potential Roles in Skeletal Muscle. Journal of Nutritional Science and Vitaminology, 64(1), 68-74. https://doi.org/10.3177/jnsv.64.68

Chikazawa, M., & Sato, R. (2018b). Identification of a Novel Function of Resveratrol and Genistein as a Regulator of β2 -Adrenergic Receptor Expression in Skeletal Muscle Cells and Characterization of Promoter Elements Required for Promoter Activation. Molecular Nutrition & Food Research, 62(22), e1800530. https://doi.org/10.1002/mnfr.201800530

Chisholm, K. M., Chang, K. W., Truong, M. T., Kwok, S., West, R. B., & Heerema-McKenney, A. E. (2012). β-Adrenergic receptor expression in vascular tumors. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 25(11), 1446-1451. https://doi.org/10.1038/modpathol.2012.108

Choo, J. J., Horan, M. A., Little, R. A., & Rothwell, N. J. (1992). Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation. The American Journal of Physiology, 263(1 Pt 1), E50-56. https://doi.org/10.1152/ajpendo.1992.263.1.E50

D'Angelo, G., Lee, H., & Weiner, R. I. (1997). CAMP-dependent protein kinase inhibits the mitogenic action of vascular endothelial growth factor and fibroblast growth factor in capillary endothelial cells by blocking Raf activation. Journal of Cellular Biochemistry, 67(3), 353-366. https://doi.org/10.1002/(SICI)1097-4644(19971201)67:3<353::AID-JCB7>3.0.CO;2-V

Davis, E., Loiacono, R., & Summers, R. J. (2008). The rush to adrenaline: Drugs in sport acting on the β-adrenergic system. British Journal of Pharmacology, 154(3), 584-597. https://doi.org/10.1038/bjp.2008.164

Fajardo, G., Zhao, M., Berry, G., Wong, L.-J., Mochly-Rosen, D., & Bernstein, D. (2011). Β2-adrenergic receptors mediate cardioprotection through crosstalk with mitochondrial cell death pathways. Journal of Molecular and Cellular Cardiology, 51(5), 781-789. https://doi.org/10.1016/j.yjmcc.2011.06.019

Freedman, N. J., & Lefkowitz, R. J. (2004). Anti-β1-adrenergic receptor antibodies and heart failure: Causation, not just correlation. Journal of Clinical Investigation, 113(10), 1379-1382. https://doi.org/10.1172/JCI200421748

Gonçalves, D. A. P., Silveira, W. A., Lira, E. C., Graça, F. A., Paula-Gomes, S., Zanon, N. M., Kettelhut, I. C., & Navegantes, L. C. C. (2011). Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. American Journal of Physiology-Endocrinology and Metabolism, 302(1), E123-E133. https://doi.org/10.1152/ajpendo.00188.2011

Guimarães, S., & Moura, D. (2001). Vascular adrenoceptors: An update. Pharmacological Reviews, 53(2), 319-356.

Head, B. P., Patel, H. H., Roth, D. M., Lai, N. C., Niesman, I. R., Farquhar, M. G., & Insel, P. A. (2005). G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. The Journal of Biological Chemistry, 280(35), 31036-31044. https://doi.org/10.1074/jbc.M502540200

Hostrup, M., Kalsen, A., Onslev, J., Jessen, S., Haase, C., Habib, S., Ørtenblad, N., Backer, V., & Bangsbo, J. (2015). Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men. Journal of Applied Physiology (Bethesda, Md.: 1985), 119(5), 475-486. https://doi.org/10.1152/japplphysiol.00319.2015

Iaccarino, G., Ciccarelli, M., Sorriento, D., Galasso, G., Campanile, A., Santulli, G., Cipolletta, E., Cerullo, V., Cimini, V., Altobelli, G. G., Piscione, F., Priante, O., Pastore, L., Chiariello, M., Salvatore, F., Koch, W. J., & Trimarco, B. (2005). Ischemic neoangiogenesis enhanced by beta2-adrenergic receptor overexpression: A novel role for the endothelial adrenergic system. Circulation Research, 97(11), 1182-1189. https://doi.org/10.1161/01.RES.0000191541.06788.bb

Jean-Baptiste, G., Yang, Z., Khoury, C., Gaudio, S., & Greenwood, M. T. (2005). Peptide and non-peptide G-protein coupled receptors (GPCRs) in skeletal muscle. Peptides, 26(8), 1528-1536. https://doi.org/10.1016/j.peptides.2005.03.011

Jenkins, N. D. M., Colquhoun, R. J., Tomko, P. M., Gradnigo, T., Magrini, M. A., Muddle, T. W. D., Fleming, S., Ferrell, M., & El-Sohemy, A. (2018). Genetic variant in the β2 -adrenergic receptor (Arg16Gly) influences fat-free mass, muscle strength and motor unit behaviour in young men. Experimental Physiology, 103(12), 1645-1655. https://doi.org/10.1113/EP087145

Jessen, S., Onslev, J., Lemminger, A., Backer, V., Bangsbo, J., & Hostrup, M. (2018). Hypertrophic effect of inhaled beta2 -agonist with and without concurrent exercise training: A randomized controlled trial. Scandinavian Journal of Medicine & Science in Sports, 28(10), 2114-2122. https://doi.org/10.1111/sms.13221

Joassard, O. R., Amirouche, A., Gallot, Y. S., Desgeorges, M. M., Castells, J., Durieux, A.-C., Berthon, P., & Freyssenet, D. G. (2013). Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle. The International Journal of Biochemistry & Cell Biology, 45(11), 2444-2455. https://doi.org/10.1016/j.biocel.2013.07.019

Kamalakkannan, G., Petrilli, C. M., George, I., LaManca, J., McLaughlin, B. T., Shane, E., Mancini, D. M., & Maybaum, S. (2008). Clenbuterol increases lean muscle mass but not endurance in patients with chronic heart failure. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation, 27(4), 457-461. https://doi.org/10.1016/j.healun.2008.01.013

Kim, J., Grotegut, C. A., Wisler, J. W., Li, T., Mao, L., Chen, M., Chen, W., Rosenberg, P. B., Rockman, H. A., & Lefkowitz, R. J. (2018). β-arrestin 1 regulates β2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility. Skeletal Muscle, 8. https://doi.org/10.1186/s13395-018-0184-8

Kim, J., Grotegut, C. A., Wisler, J. W., Mao, L., Rosenberg, P. B., Rockman, H. A., & Lefkowitz, R. J. (2020). The β-arrestin-biased β-adrenergic receptor blocker carvedilol enhances skeletal muscle contractility. Proceedings of the National Academy of Sciences, 117(22), 12435-12443. https://doi.org/10.1073/pnas.1920310117

Koopman, R., Gehrig, S. M., Léger, B., Trieu, J., Walrand, S., Murphy, K. T., & Lynch, G. S. (2010). Cellular mechanisms underlying temporal changes in skeletal muscle protein synthesis and breakdown during chronic {beta}-adrenoceptor stimulation in mice. The Journal of Physiology, 588(Pt 23), 4811-4823. https://doi.org/10.1113/jphysiol.2010.196725

Koziczak-Holbro, M., Rigel, D. F., Dumotier, B., Sykes, D. A., Tsao, J., Nguyen, N.-H., Bösch, J., Jourdain, M., Flotte, L., Adachi, Y., Kiffe, M., Azria, M., Fairhurst, R. A., Charlton, S. J., Richardson, B. P., Lach-Trifilieff, E., Glass, D. J., Ullrich, T., & Hatakeyama, S. (2019). Pharmacological Characterization of a Novel 5-Hydroxybenzothiazolone-Derived β2-Adrenoceptor Agonist with Functional Selectivity for Anabolic Effects on Skeletal Muscle Resulting in a Wider Cardiovascular Safety Window in Preclinical Studies. The Journal of Pharmacology and Experimental Therapeutics, 369(2), 188-199. https://doi.org/10.1124/jpet.118.255307

Kuramoto, N., Nomura, K., Kohno, D., Kitamura, T., Karsenty, G., Hosooka, T., & Ogawa, W. (2021). Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load. Scientific Reports, 11(1), 3447. https://doi.org/10.1038/s41598-021-83098-z

Le Panse, B., Collomp, K., Portier, H., Lecoq, A.-M., Jaffre, C., Beaupied, H., Richard, O., Benhamou, L., De Ceaurriz, J., & Courteix, D. (2005). Effects of short-term salbutamol ingestion during a Wingate test. International Journal of Sports Medicine, 26(7), 518-523. https://doi.org/10.1055/s-2004-821224

Li, Y., Yuan, H., Sun, L., Zhou, Q., Yang, F., Yang, Z., & Liu, D. (2019). β2-Adrenergic Receptor Gene Polymorphisms Are Associated with Cardiovascular Events But not All-Cause Mortality in Coronary Artery Disease Patients: A Meta-Analysis of Prospective Studies. Genetic Testing and Molecular Biomarkers, 23(2), 124-137. https://doi.org/10.1089/gtmb.2018.0153

Meszaros, J. G., Gonzalez, A. M., Endo-Mochizuki, Y., Villegas, S., Villarreal, F., & Brunton, L. L. (2000). Identification of G protein-coupled signaling pathways in cardiac fibroblasts: Cross talk between G(q) and G(s). American Journal of Physiology. Cell Physiology, 278(1), C154-162. https://doi.org/10.1152/ajpcell.2000.278.1.C154

Minetti, G. C., Feige, J. N., Rosenstiel, A., Bombard, F., Meier, V., Werner, A., Bassilana, F., Sailer, A. W., Kahle, P., Lambert, C., Glass, D. J., & Fornaro, M. (2011). Gαi2 Signaling Promotes Skeletal Muscle Hypertrophy, Myoblast Differentiation, and Muscle Regeneration. Science Signaling, 4(201), ra80-ra80. https://doi.org/10.1126/scisignal.2002038

Navegantes, L. C., Resano, N. M. Z., Baviera, A. M., Migliorini, R. H., & Kettelhut, I. C. (2004). Effect of sympathetic denervation on the rate of protein synthesis in rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 286(4), E642-647. https://doi.org/10.1152/ajpendo.00371.2003

Navegantes, L. C., Resano, N. M., Migliorini, R. H., & Kettelhut, I. C. (2000). Role of adrenoceptors and cAMP on the catecholamine-induced inhibition of proteolysis in rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 279(3), E663-668. https://doi.org/10.1152/ajpendo.2000.279.3.E663

Navegantes, L. C., Resano, N. M., Migliorini, R. H., & Kettelhut IC, null. (2001). Catecholamines inhibit Ca(2+)-dependent proteolysis in rat skeletal muscle through beta(2)-adrenoceptors and cAMP. American Journal of Physiology. Endocrinology and Metabolism, 281(3), E449-454. https://doi.org/10.1152/ajpendo.2001.281.3.E449

Noh, H., Yu, M. R., Kim, H. J., Lee, J. H., Park, B.-W., Wu, I.-H., Matsumoto, M., & King, G. L. (2017). Beta 2-adrenergic receptor agonists are novel regulators of macrophage activation in diabetic renal and cardiovascular complications. Kidney International, 92(1), 101-113. https://doi.org/10.1016/j.kint.2017.02.013

Pellegrino, M. A., D'Antona, G., Bortolotto, S., Boschi, F., Pastoris, O., Bottinelli, R., Polla, B., & Reggiani, C. (2004). Clenbuterol antagonizes glucocorticoid-induced atrophy and fibre type transformation in mice. Experimental Physiology, 89(1), 89-100. https://doi.org/10.1113/expphysiol.2003.002609

Rang, H. P., Dale, M. M., Ritter, J. M., & Moore, P. (2003). Pharmacology. Churchill Livingstone.

Rybin, V. O., Xu, X., Lisanti, M. P., & Steinberg, S. F. (2000). Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. The Journal of Biological Chemistry, 275(52), 41447-41457. https://doi.org/10.1074/jbc.M006951200

Santos, I. N., & Spadari-Bratfisch, R. C. (2006). Stress and cardiac beta adrenoceptors. Stress (Amsterdam, Netherlands), 9(2), 69-84. https://doi.org/10.1080/10253890600771858

Sato, S., Shirato, K., Tachiyashiki, K., & Imaizumi, K. (2011). Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy. Journal of Biomedicine and Biotechnology, 2011. https://doi.org/10.1155/2011/729598

Scholpa, N. E., Simmons, E. C., Tilley, D. G., & Schnellmann, R. G. (2019). Β2-adrenergic receptor-mediated mitochondrial biogenesis improves skeletal muscle recovery following spinal cord injury. Experimental Neurology, 322, 113064. https://doi.org/10.1016/j.expneurol.2019.113064

Spadari, R. C., Cavadas, C., de Carvalho, A. E. T. S., Ortolani, D., de Moura, A. L., & Vassalo, P. F. (2018). Role of Beta-adrenergic Receptors and Sirtuin Signaling in the Heart During Aging, Heart Failure, and Adaptation to Stress. Cellular and Molecular Neurobiology, 38(1), 109-120. https://doi.org/10.1007/s10571-017-0557-2

Storch, C. H., & Hoeger, P. H. (2010). Propranolol for infantile haemangiomas: Insights into the molecular mechanisms of action. The British Journal of Dermatology, 163(2), 269-274. https://doi.org/10.1111/j.1365-2133.2010.09848.x

Toledo, M., Busquets, S., Penna, F., Zhou, X., Marmonti, E., Betancourt, A., Massa, D., López-Soriano, F. J., Han, H. Q., & Argilés, J. M. (2016). Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and β-2 agonist. International Journal of Cancer, 138(8), 2021-2029. https://doi.org/10.1002/ijc.29930

Wang, Q., Liu, Y., Fu, Q., Xu, B., Zhang, Y., Kim, S., Tan, R., Barbagallo, F., West, T., Anderson, E., Wei, W., Abel, E. D., & Xiang, Y. K. (2017). Inhibiting Insulin-Mediated β2-Adrenergic Receptor Activation Prevents Diabetes-Associated Cardiac Dysfunction. Circulation, 135(1), 73-88. https://doi.org/10.1161/CIRCULATIONAHA.116.022281

Woo, A. Y. H., & Xiao, R. (2012). β-Adrenergic receptor subtype signaling in heart: From bench to bedside. Acta Pharmacologica Sinica, 33(3), 335-341. https://doi.org/10.1038/aps.2011.201

Wright, P. T., Nikolaev, V. O., O'Hara, T., Diakonov, I., Bhargava, A., Tokar, S., Schobesberger, S., Shevchuk, A. I., Sikkel, M. B., Wilkinson, R., Trayanova, N. A., Lyon, A. R., Harding, S. E., & Gorelik, J. (2014). Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. Journal of Molecular and Cellular Cardiology, 67, 38-48. https://doi.org/10.1016/j.yjmcc.2013.12.003

Xia, K., Ding, R., Zhang, Z., Li, W., Shang, X., Yang, X., Wang, L., & Zhang, Q. (2017). The association of eight potentially functional polymorphisms in five adrenergic receptor-encoding genes with myocardial infarction risk in Han Chinese. Gene, 624, 43-49. https://doi.org/10.1016/j.gene.2017.04.045

Xiang, Y., Rybin, V. O., Steinberg, S. F., & Kobilka, B. (2002). Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. The Journal of Biological Chemistry, 277(37), 34280-34286. https://doi.org/10.1074/jbc.M201644200

Yimlamai, T., Dodd, S. L., Borst, S. E., & Park, S. (2005). Clenbuterol induces muscle-specific attenuation of atrophy through effects on the ubiquitin-proteasome pathway. Journal of Applied Physiology (Bethesda, Md.: 1985), 99(1), 71-80. https://doi.org/10.1152/japplphysiol.00448.2004

Zhu, W. Z., Zheng, M., Koch, W. J., Lefkowitz, R. J., Kobilka, B. K., & Xiao, R. P. (2001). Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1607-1612. https://doi.org/10.1073/pnas.98.4.1607

Ziegler, O., Anderson, K., Liu, Y., Ehsan, A., Fingleton, J., Sodha, N., Feng, J., & Sellke, F. W. (2020). Skeletal muscle microvasculature response to β-adrenergic stimuli is diminished with cardiac surgery. Surgery, 167(2), 493-498. https://doi.org/10.1016/j.surg.2019.07.018




DOI: https://doi.org/10.14198/jhse.2021.16.Proc3.53





Copyright (c) 2021 Journal of Human Sport and Exercise

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.