Impact of alternative footwear on human energy expenditure
DOI:
https://doi.org/10.14198/jhse.2017.124.08Keywords:
Minimalist footwear, Slip-On shoes, Physical activity, WalkingAbstract
Purpose: Use of alternative footwear options such as flip-flop style sandals and minimalist athletic shoes are becoming increasingly popular footwear choices. The purpose of the investigation was to analyze the energy expenditure and oxygen consumption requirements of walking at preferred pace while wearing flip-flops, slip-on style shoes, and minimalist athletic shoes. Methods: Eighteen healthy male adults participated in this study. In addition to an initial familiarization session, participants were tested in three different footwear conditions [thong-style flip-flops (FF), Croc® slip on shoes (CROC), and Vibram Fivefingers® minimalist shoes (MIN)]. Then after a brief warm-up, participants walked a one-mile distance at their preferred pace. Immediately following completion of the one-mile walk, participants stood quietly on the treadmill for an additional period to assess excess post-exercise oxygen consumption (EPOC). Results: A repeated-measures ANOVA that the following variables did not show evidence of a significant differently value between conditions: preferred pace (p = 0.392), average oxygen consumption (p = 0.804), energy expenditure per mile (p = 0.306), or EPOC (p = 0.088). There was shown to be a significantly higher RER during exercise in CROC compared to MIN (p = 0.031) with no significant differences observed when comparing CROC to FF (p = 0.106) or FF to MIN (p = 0.827). Conclusion: Based on the results of the current study, it appears that the alternative footwear selected for evaluation do not lead to a substantial alteration of walking pace or overall EE. However, the significant difference in RER suggesting a slightly elevated exercise intensity while wearing the CROC could perhaps be related to the softer sole, influencing overall mechanical efficiency.
Funding
The study was funded by a grant awarded by the Graduate Student Council at the author’s UniversityDownloads
References
Bassett, D.R. & Howley, E.T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine & Science in Sports & Exercise, 32(1), 70-84. https://doi.org/10.1097/00005768-200001000-00012
Bramble, D. & Lieberman, D. (2004). Endurance running and the evolution of homo. Nature, 432, 345-352. https://doi.org/10.1038/nature03052
Brehm, B.A. & Gutin, B. (1986). Recovery energy expenditure for steady state exercise in runners and nonexercisers. Medicine & Science in Sports & Exercise, 18, 205-210. https://doi.org/10.1249/00005768-198604000-00010
Browning, R. & Kram, R. (2005). Energetic cost and preferred speed of walking in obese vs. normal weight women. Obesity Research, 13, 891-899. https://doi.org/10.1038/oby.2005.103
Burkett, L.N., Kohrt, W.M., & Buchbinder, R. (1985). Effects of shoes and foot orthotics on vo2 and selected frontal plane knee kinematics. Medicine & Science in Sports & Exercise, 17(1), 158-163. https://doi.org/10.1249/00005768-198502000-00026
Chander, H., Morris, C.E., Wilson, S.J., Garner, J.C., & Wade, C. (2016). Impact of alternative footwear on human balance. Footwear Science. https://doi.org/10.1080/19424280.2016.1195881
DeWit, B., De Clerq, D., & Aerts, P. (2000). Biomechanical analysis of the stance phase during barefoot and shod running. Journal of Biomechanics, 33, 269/278. https://doi.org/10.1016/S0021-9290(99)00192-X
Divert, C., Mornieux, G., Baur, H., Mayer, F., & Belli, A. (2005). Mechanical comparison of barefoot and shod running. International Journal of Sports Medicine, 26, 593-598. https://doi.org/10.1055/s-2004-821327
Divert, C., Mornieux, G., Freychat, P., Baly, L., Mayer, F., & Belli, A. (2008). Barefoot-shod running differences: Shoe or mass effect? International Journal of Sports Medicine, 29, 512-518. https://doi.org/10.1055/s-2007-989233
Frey, G.C., Byrnes, W.C., & Mazzeo, R.S. (1993). Factors influencing excess postexercise oxygen consumption in trained and untrained women. Metabolism, 42, 822-828. https://doi.org/10.1016/0026-0495(93)90053-Q
Hanson, N.J., Berg, K., Deka, P., Meendering, J.R., & Ryan, C. (2011). Oxygen cost of running barefoot vs. running shod. International Journal of Sports Medicine, 32, 401-406. https://doi.org/10.1055/s-0030-1265203
Kurz, M.J. & Stergiou (2004). Does footwear affect ankle coordination strategies? Journal of the American Podiatric Medical Association, 94(1), 53-58. https://doi.org/10.7547/87507315-94-1-53
Loftin, M., Waddell, D., Robinson, J., & Owens, S. (2010). Comparison of energy expenditure to walk or run a mile in adult normal weight and overweight men and women. Journal of Strength and Conditioning Research, 24(10), 2794-2798. https://doi.org/10.1519/JSC.0b013e3181cc26cd
Lucia, A., Esteve-Lanao, J., Oliván, J., Gómez-Gallego, F., San Juan, A.F., Santiago, C., … & Foster, C. (2006). Physiological characteristics of the best eritrean runners – exceptional running economy. Applied Physiology, Nutrition, and Metabolism, 31, 530-540. https://doi.org/10.1139/h06-029
Moore, I.S., Jones, A., & Dixon, S. (2015). The pursuit of improved running performance: Can changes in cushioning and somatosensory feedback influence running economy and injury risk? Footwear Science, 6(1), 1-11. https://doi.org/10.1080/19424280.2013.873487
Morris, C.E., Owens, S.G., Waddell, D.E., Bass, M.A., Bentley, J.P., & Loftin, M. (2014). Cross-validation of a recently published equation predicting energy expenditure to run or walk a mile in normal weight and overweight adults. Measurement in Physical Education and Exercise Science, 18(1), 1-12. https://doi.org/10.1080/1091367X.2013.807264
Morris, C.E., Garner, J.C., Owens, S.G., Valliant, M.W., & Loftin, M. (2017). Evaluation of the accuracy of a previously published equation to predict energy expenditure per unit distance following an exercise intervention in previously sedentary overweight adults. Gazzetta Medica Italiana, 01-02 (in press).
Noakes, T.D. (1988). Implications of exercise testing for prediction of athletic performance: A contemporary perspective. Medicine & Science in Sports & Exercise, 20(4), 319-330. https://doi.org/10.1249/00005768-198808000-00001
Perl, D.P., Daoud, A.I., & Lieberman, D.E. (2012). Effects of footwear and strike type on running economy. Medicine and Science in Sports and Exercise, 44(7), 1335-1343. https://doi.org/10.1249/MSS.0b013e318247989e
Robbins, S.E. & Hanna, A.M. (1987). Running-related injury prevention through barefoot adaptations. Medicine and Science in Sports and Exercise, 19(2), 148-156. https://doi.org/10.1249/00005768-198704000-00014
Robinson, L.E., Rudisill, M.E., Weimar, W.H., Breslin, C.M., Shroyer, J.F., & Morera, M. (2011). Footwear and locomotor skills performance in preschoolers. Perceptual and Motor Skills, 113(2), 534-538. https://doi.org/10.2466/05.06.10.26.PMS.113.5.534-538
Sallis, J.F., Haskell, W.L., & Wood, P.D. (1985). Physical activity assessment methodology in the five-city project. American Journal of Epidemiology, 121, 91-106. https://doi.org/10.1093/oxfordjournals.aje.a113987
Sedlock, D.A. (1994). Fitness level and postexercise energy metabolism. Journal of Sports Medicine and Physical Fitness, 34, 336-342.
Sedlock, D.A., Lee, M.-G., Flynn, M.G., Park, K.-S., & Kamimori, G.H. (2010). Excess postexercise oxygen consumption after aerobic exercise training. International Journal of Sport Nutrition and Exercise Metabolism, 20, 336-349. https://doi.org/10.1123/ijsnem.20.4.336
Short, K.R. & Sedlock, D.A. (1997). Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. Journal of Applied Physiology, 83, 153-159.
Shroyer, J.F., & Weimar, W.H. (2010). Comparative analysis of human gait while wearing thong-style flip-flops versus sneakers. Journal of the American Podiatric Medical Association, 100(4), 251-257. https://doi.org/10.7547/1000251
Squadrone, R., & Gallozzi, C. (2009). Biomechanical and physiological comparison of barefoot and two shod conditions in experienced barefoot runners. The Journal of Sports Medicine and Physical Fitness, 49, 6-13.
Stacoff, A., Nigg, B. M., Reinschmidt, C., van den Bogert, A.J., & Lundberg, A. (2000). Tibiocalcaneal kinematics of barefoot versus shod running. Journal of Biomechanics, 33, 1387-1395. https://doi.org/10.1016/S0021-9290(00)00116-0
Thomas, S., Reading, J., & Shephard, R.J. (1992). Revision of the physical activity readiness questionnaire (par-q). Canadian Journal of Sport Sciences, 17(4), 338-345.
Zhang, X., Paquette, M.R., & Zhang, S. (2013). A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes. Journal of Foot and Ankle Research, 6(45), 1-8. https://doi.org/10.1186/1757-1146-6-45
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.