Intra-cyclic analysis of the front crawl swimming technique with an inertial measurement unit


  • André Engel University of Hamburg, Germany
  • Nina Schaffert University of Hamburg BeSB GmbH Sound Engineering, Germany
  • Roy Ploigt BeSB GmbH Sound Engineering, Germany
  • Klaus Mattes University of Hamburg, Germany



IMU, Freestyle, Swimming, Movement technique, Acceleration, Biomechanics


Sports scientists and coaches strive to identify and analyse performance relevant parameters and to optimize them in the training practice. In swimming, this process is time-consuming and requires expensive and professional video equipment, which is currently considered the gold standard. Since inertial measurement units (IMUs) are increasingly interesting for athletes, are more easily accessible and are less disturbing to wear, they offer an ideal alternative to classic video-supported motion analysis. In addition, IMUs provide further data of interest to scientists and trainers. The present study aims to transfer the findings from the video analysis data to the data measured with an IMU. The focus is on the frontal crawl and its key movements, body roll, angular velocity and forward acceleration in relation to their intra-cyclic variations. Ten athletes from regional to national level swam 100 m front crawl and the video recording was combined with the IMU to analyse the key positions and find similarities and differences between the swimmers. The findings are the basis for an automatic pattern recognition system to provide coaches and scientists with immediate feedback on the execution of movements and to decide which parameters should be specifically trained to improve performance.


Download data is not yet available.


Bächlin, M., & Tröster, G. (2012). Swimming performance and technique evaluation with wearable acceleration sensors. Pervasive and mobile computing, 8(1), 68-81.

Bächlin, M., Förster, K., & Tröster, G. (2009). SwimMaster: a wearable assistant for swimmer. In Proceedings of the 11th international conference on Ubiquitous computing (pp. 215-224). Orlando, USA, 30 September-3 October 2009, ACM.

Callaway, A. J. (2015). Measuring kinematic variables in front crawl swimming using accelerometers: a validation study. Sensors, 15(5), 11363-11386.

Chakravorti, N., Le Sage, T., Slawson, S. E., Conway, P. P., & West, A. A. (2013). Design and implementation of an integrated performance monitoring tool for swimming to extract stroke information at real time. IEEE transactions on human-machine systems, 43(2), 199-213.

Chollet, D., Chalies, S., & Chatard, J. C. (2000). A new index of coordination for the crawl: description and usefulness. International journal of sports medicine, 21(01), 54-59.

Colman, V., Persyn, U., & Ungerechts, B. (1998). A mass of water added to the swimmer's mass to estimate the velocity in dolphin-like swimming below the water surface. In Keskinen KL, Komi PV, Hollander, AP (eds). Biomechanics and medicine in swimming. In III. Proceedings of the VIII International Symposium on Biomechanics and Medicine in Swimming, Jyväskylä, 1998, pp 89-94.

Counsilman, J. E., & Wilke, K. (1980). Handbuch des Sportschwimmens für Trainer, Lehrer und Athleten: zur schwimmsportlichen Trainings-u. Bewegungslehre. Schwimmsport-Verlag Fahnemann, pp.177-192.

Dadashi, F., Crettenand, F., Millet, G. P., Seifert, L., Komar, J., & Aminian, K. (2013). Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals. Journal of sports sciences, 31(11), 1251-1260.

Daukantas, S., Marozas, V., & Lukosevicius, A. (2008). Inertial sensor for objective evaluation of swimmer performance. In Proceedings 11th International Biennial Baltic Electronics Conference (pp. 321-324). IEEE, Tallinn, Estonia, 6 October-8 October 2008, pp.321-324. IEEE.

Davey, N., Anderson, M., & James, D. A. (2008). Validation trial of an accelerometer‐based sensor platform for swimming. Sports Technology, 1(4-5), 202-207.

Engel, A., Schaffert, N., Ploigt, R. & Mattes, K. (in print). Intra-cyclic analysis of the butterfly swimming technique using an inertial measurement unit. Journal of Biology of Exercise.

Engel, A., Schaffert, N., Ploigt, R. & Mattes, K. (in print). Intra-cyclic analysis of the breaststroke technique with an inertial measurement unit. Journal of Biology of Exercise.

FINA, (last time accessed 30/03/2020).

Fulton, S. K., Pyne, D. B., & Burkett, B. (2009). Validity and reliability of kick count and rate in freestyle using inertial sensor technology. Journal of sports sciences, 27(10), 1051-1058.

Ganzevles, S., Vullings, R., Beek, P. J., Daanen, H., & Truijens, M. (2017). Using tri-axial accelerometry in daily elite swim training practice. Sensors, 17(5), 990.

Hagem, R. M., O'Keefe, S. G., Fickenscher, T., & Thiel, D. V. (2013). Self contained adaptable optical wireless communications system for stroke rate during swimming. IEEE Sensors Journal, 13(8), 3144-3151.

Hagem, R. M., Sabti, H. A., & Thiel, D. V. (2015). Coach-Swimmer communications based on wrist mounted 2.4 GHz accelerometer sensor. Procedia Engineering, 112, 512-516.

James, D. A., Davey, N., & Rice, T. (2004). An accelerometer based sensor platform for insitu elite athlete performance analysis. In SENSORS, 2004 IEEE (pp. 1373-1376). IEEE.

jBeam, (last time accessed 22/05/2020).

Jensen, U., Prade, F., & Eskofier, B. M. (2013). Classification of kinematic swimming data with emphasis on resource consumption. In 2013 IEEE International Conference on Body Sensor Networks (pp. 1-5). IEEE.

Kudo, S., Sakurai, Y., Miwa, T., & Matsuda, Y. (2017). Relationship between shoulder roll and hand propulsion in the front crawl stroke. Journal of sports sciences, 35(10), 945-952.

Le Sage, T., Bindel, A., Conway, P., Justham, L., Slawson, S., & West, A. (2010). Development of a real time system for monitoring of swimming performance. Procedia Engineering, 2(2), 2707-2712.

Le Sage, T., Bindel, A., Conway, P. P., Justham, L. M., Slawson, S. E., & West, A. A. (2011). Embedded programming and real-time signal processing of swimming strokes. Sports Engineering, 14(1), 1.

Madsen, Ö., Reischle, K. & Rudolph, K. (2014). Wege zum Topschwimmer, Band 1-3, Verlag Hofmann.

Magalhaes, F. A. D., Vannozzi, G., Gatta, G., & Fantozzi, S. (2015). Wearable inertial sensors in swimming motion analysis: a systematic review. Journal of sports sciences, 33(7), 732-745.

Maglischo, C. W., Maglischo, E. W., Higgins, J., Hinrichs, R., Luedtke, D., Schleihauf, R. E., & Thayer, A. (1988). A biomechanical analysis of the 1984 US Olympic freestyle distance swimmers. Swimming science V, 351-359.

Maglischo, E. W. (1993). Swimming even faster. McGraw-Hill Humanities, Social Sciences & World Languages, pp.413-446.

Mooney, R., Corley, G., Godfrey, A., Quinlan, L. R., & ÓLaighin, G. (2016). Inertial sensor technology for elite swimming performance analysis: A systematic review. Sensors, 16(1), 18.

Mooney, R., Quinlan, L. R., Corley, G., Godfrey, A., Osborough, C., & ÓLaighin, G. (2017). Evaluation of the Finis Swimsense® and the Garmin Swim™ activity monitors for swimming performance and stroke kinematics analysis. PloS one, 12(2): e0170902.

Ohgi, Y., Kaneda, K., & Takakura, A. (2014). Sensor data mining on the kinematical characteristics of the competitive swimming. Procedia Engineering, 72, 829-834.

Pansiot, J., Lo, B., & Yang, G. Z. (2010). Swimming stroke kinematic analysis with BSN. In 2010 International Conference on Body Sensor Networks (pp. 153-158). IEEE, Corfu, Greece, 10 September-12 September 2010.

Peiwei, H. (2012). The Study on Swimming Exercises based on 3 D Accelerometer Data Analysis. International Journal of Advancements in Computing Technology, 4(21).

Puel, F., Seifert, L., & Hellard, P. (2014). Validation of an inertial measurement unit for the determination of the longitudinal speed of a swimmer. In Proceedings of the XIIth International Symposium for Biomechanics and Medicine in Swimming (pp. 484-489). Bruce, ACT: Australian Institute of Sport.

Rowlands, D. D., James, D. A., & Lee, J. B. (2013). Visualization of wearable sensor data during swimming for performance analysis. Sports Technology, 6(3), 130-136.

Sanders, R. H. & McCabe, C. B. (2015). Freestyle Technique. In Riewald, S. & Rodeo, S. (eds) Science of swimming faster. Hum Kinet, pp.23-50.

Siirtola, P., Laurinen, P., Röning, J., & Kinnunen, H. (2011). Efficient accelerometer-based swimming exercise tracking. In 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) (pp. 156-161). IEEE, Paris, France, 11 April-15 April 2011.

Slawson, S. E., Justham, L. M., West, A. A., Conway, P. P., Caine, M. P., & Harrison, R. (2008). Accelerometer profile recognition of swimming strokes. The engineering of sport, 7, 81-87.

Stamm, A., James, D. A., Burkett, B. B., Hagem, R. M., & Thiel, D. V. (2013). Determining maximum push-off velocity in swimming using accelerometers. Procedia Engineering, 60, 201-207.

Stamm, A., & Thiel, D. V. (2015). Investigating forward velocity and symmetry in freestyle swimming using inertial sensors. Procedia Engineering, 112, 522-527.

Staniak, Z., Buśko, K., Górski, M., & Pastuszak, A. (2016). Accelerometer profile of motion of the pelvic girdle in breaststroke swimming. Journal of human kinetics, 52(1), 147-156.

Ungerechts, B., Cesarini, D., Hamann, M., Ritter, Y., Weidner, S., Haldorn, T., & Hermann, T. (2016). Patterns of flow pressure due to hand-water-interaction of skilled breaststroke swimmers–a preliminary study. Procedia engineering, 147.


Statistics RUA



How to Cite

Engel, A., Schaffert, N., Ploigt, R., & Mattes, K. (2022). Intra-cyclic analysis of the front crawl swimming technique with an inertial measurement unit. Journal of Human Sport and Exercise, 17(3), 667–682.