Effects of protein supplementation in fitness world: A 12-week cross-over studio

Authors

  • Giuseppe Messina University of Palermo, Italy
  • Alessandra Amato University of Palermo, Italy
  • Giuseppe D'amico University of Palermo, Italy
  • Sara Baldassano University of Palermo, Italy
  • Patrizia Proia University of Palermo, Italy

DOI:

https://doi.org/10.14198/jhse.2020.15.Proc2.22

Keywords:

Training, Supplementation, Body composition, Neuromuscular strength, Hypertrophy

Abstract

The aim of this project was to evaluate the effect of isolated protein supplementation in young amateur athletes. Sixteen subjects aged between 20 and 30 were recruited for this study. Before to start sports performance was assessed at T0, in all subjects, using physical performance test and evaluated body composition. Therefore, the subjects were randomly assigned in two groups (group A and B) of 8 subjects each. The group A start to intake 30 g of protein powder diluted in water after each training session (3 times a week) for six weeks (T0) whilst the group B was the placebo. After 6 weeks (T1), the measurement were repeated for all subjects and the group A became placebo and the group B started with the supplementation. At the end of 6 weeks (T2) we carried out all the tests were performed again. Results showed a significant improvement in almost all tests between T0 and T2 within the same group (p < .05), but not significant difference was found between the start and the end of protein’s intake period in both groups. In conclusion, supplementation did not have affect the performance and body composition significantly. Instead, training seems to influence the performance more the supplementation.

Funding

none

Downloads

Download data is not yet available.

References

Amato A., Messina G., Contrò V., Sacco A., Proia P. (2018). Total genetic score: An instrument to improve the performance in the elite athletes Acta Medica Mediterranea, 34 (6), pp. 1857-1862. https://doi.org/10.19193/0393-6384_2018_6_287

Amato, A., Sacco, A., Macchiarella, A., Contrò, V., Sabatino, E., Galassi, C., & Proia, P. (2017). Influence of nutrition and genetics on performance: a pilot study in a group of gymnasts. Human Movement, 18(3), 12-16. https://doi.org/10.1515/humo-2017-0029

Areta, J. L., Burke, L. M., Ross, M. L., Camera, D. M., West, D. W., Broad, E. M., . . . Coffey, V. G. (2013). Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol, 591(9), 2319-2331. https://doi.org/10.1113/jphysiol.2012.244897

Breen, L., Tipton, K. D., & Jeukendrup, A. E. (2010). No effect of carbohydrate-protein on cycling performance and indices of recovery. Med Sci Sports Exerc, 42(6), 1140-1148. https://doi.org/10.1249/mss.0b013e3181c91f1a

Campbell, B., Kreider, R. B., Ziegenfuss, T., La Bounty, P., Roberts, M., Burke, D., . . . Antonio, J. (2007). International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr, 4, 8. https://doi.org/10.1186/1550-2783-4-8

Cermak, N. M., Res, P. T., de Groot, L. C., Saris, W. H., & van Loon, L. J. (2012). Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr, 96(6), 1454-1464. https://doi.org/10.3945/ajcn.112.037556

Churchward-Venne, T. A., Murphy, C. H., Longland, T. M., & Phillips, S. M. (2013). Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans. Amino Acids, 45(2), 231-240. https://doi.org/10.1007/s00726-013-1506-0

D'Lugos, A. C., Luden, N. D., Faller, J. M., Akers, J. D., McKenzie, A. I., & Saunders, M. J. (2016). Supplemental Protein during Heavy Cycling Training and Recovery Impacts Skeletal Muscle and Heart Rate Responses but Not Performance. Nutrients, 8(9). https://doi.org/10.3390/nu8090550

Francavilla, G., & Francavilla, V. C. (2013). Physical exercise is terapy Med Sport Sci., 66(4), 625-628.

Francavilla, V. C., Bongiovanni, T., Genovesi, F., Minafra, P., & Francavilla, G. (2015). Localized bioelectrical impedance analysis: How useful is it in the follow-up of muscle injury? A case report. Medicina dello sport; rivista di fisiopatologia dello sport, 68.

Francavilla, V. C., Bongiovanni, T., Todaro, L., Di Pietro, V., & Francavilla, G. (2017). Probiotic supplements and athletic performance: a review of the literature. Med Sport, 70(2), 247-259. https://doi.org/10.23736/S0025-7826.17.03037-X

Hartman, J. W., Tang, J. E., Wilkinson, S. B., Tarnopolsky, M. A., Lawrence, R. L., Fullerton, A. V., & Phillips, S. M. (2007). Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr, 86(2), 373-381. https://doi.org/10.1093/ajcn/86.2.373

Hoffman, J. R., Ratamess, N. A., Kang, J., Falvo, M. J., & Faigenbaum, A. D. (2007). Effects of protein supplementation on muscular performance and resting hormonal changes in college football players. J Sports Sci Med, 6(1), 85-92.

Jager, R., Kerksick, C. M., Campbell, B. I., Cribb, P. J., Wells, S. D., Skwiat, T. M., . . . Antonio, J. (2017). International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr, 14, 20. https://doi.org/10.1186/s12970-017-0177-8

Josse, A. R., Tang, J. E., Tarnopolsky, M. A., & Phillips, S. M. (2010). Body composition and strength changes in women with milk and resistance exercise. Med Sci Sports Exerc, 42(6), 1122-1130. https://doi.org/10.1249/mss.0b013e3181c854f6

Moore, D. R., Robinson, M. J., Fry, J. L., Tang, J. E., Glover, E. I., Wilkinson, S. B., . . . Phillips, S. M. (2009). Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr, 89(1), 161-168. https://doi.org/10.3945/ajcn.2008.26401

Paddon-Jones, D., Sheffield-Moore, M., Aarsland, A., Wolfe, R. R., & Ferrando, A. A. (2005). Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. Am J Physiol Endocrinol Metab, 288(4), E761-767. https://doi.org/10.1152/ajpendo.00291.2004

Pasiakos, S. M., McLellan, T. M., & Lieberman, H. R. (2015). The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Med, 45(1), 111-131. https://doi.org/10.1007/s40279-014-0242-2

Phillips, S. M. (2011). The science of muscle hypertrophy: making dietary protein count. Proc Nutr Soc, 70(1), 100-103. https://doi.org/10.1017/s002966511000399x

Proia, P., Amato, A., Puleo, R., Arnetta, F., Rizzo, F., Di Grigoli, L., . . . Messina, G. (2019). Efficacy of 12 weeks of proprioceptive training in patients with multiple sclerosis. Journal of Human Sport and Exercise,, 14(5proc), S1986-S1992. https://doi.org/10.14198/jhse.2019.14.Proc5.19

Proia, P., Di Liegro, C. M., Schiera, G., Fricano, A., & Di Liegro, I. (2016). Lactate as a Metabolite and a Regulator in the Central Nervous System. Int J Mol Sci, 17(9). https://doi.org/10.3390/ijms17091450

Romano-Ely, B. C., Todd, M. K., Saunders, M. J., & Laurent, T. S. (2006). Effect of an isocaloric carbohydrate-protein-antioxidant drink on cycling performance. Med Sci Sports Exerc, 38(9), 1608-1616. https://doi.org/10.1249/01.mss.0000229458.11452.e9

Saunders, M. J., Luden, N. D., & Herrick, J. E. (2007). Consumption of an oral carbohydrate-protein gel improves cycling endurance and prevents postexercise muscle damage. J Strength Cond Res, 21(3), 678-684. https://doi.org/10.1519/r-20506.1

Taylor, L. W., Wilborn, C., Roberts, M. D., White, A., & Dugan, K. (2016). Eight weeks of pre- and postexercise whey protein supplementation increases lean body mass and improves performance in Division III collegiate female basketball players. Appl Physiol Nutr Metab, 41(3), 249-254. https://doi.org/10.1139/apnm-2015-0463

Tinsley, G. M., Forsse, J. S., Butler, N. K., Paoli, A., Bane, A. A., La Bounty, P. M., . . . Grandjean, P. W. (2017). Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur J Sport Sci, 17(2), 200-207. https://doi.org/10.1080/17461391.2016.1223173

Tipton, K. D., & Phillips, S. M. (2013). Dietary protein for muscle hypertrophy. Nestle Nutr Inst Workshop Ser, 76, 73-84. https://doi.org/10.1159/000350259

Valentine, R. J., Saunders, M. J., Todd, M. K., & St Laurent, T. G. (2008). Influence of carbohydrate-protein beverage on cycling endurance and indices of muscle disruption. Int J Sport Nutr Exerc Metab, 18(4), 363-378. https://doi.org/10.1123/ijsnem.18.4.363

Willoughby, D. S., Stout, J. R., & Wilborn, C. D. (2007). Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids, 32(4), 467-477. https://doi.org/10.1007/s00726-006-0398-7

Wilson, J., & Wilson, G. J. (2006). Contemporary issues in protein requirements and consumption for resistance trained athletes. J Int Soc Sports Nutr, 3, 7-27. https://doi.org/10.1186/1550-2783-3-1-7

Witard, O. C., Jackman, S. R., Kies, A. K., Jeukendrup, A. E., & Tipton, K. D. (2011). Effect of increased dietary protein on tolerance to intensified training. Med Sci Sports Exerc, 43(4), 598-607. https://doi.org/10.1249/mss.0b013e3181f684c9

Statistics

Statistics RUA

Published

2020-05-27

How to Cite

Messina, G., Amato, A., D’amico, G., Baldassano, S., & Proia, P. (2020). Effects of protein supplementation in fitness world: A 12-week cross-over studio. Journal of Human Sport and Exercise, 15(2proc), S308-S314. https://doi.org/10.14198/jhse.2020.15.Proc2.22

Most read articles by the same author(s)