Journal of Human Sport and Exercise

Ventilatory threshold concordance between ergoespirometry and heart rate variability in female professional cyclists

Yecid Mina-Paz, Luis Javier Tafur-Tascon, Moises Arturo Cabrera-Hernandez, Camilo Povea-Combariza, Ximena Tejada, Hugo Hurtado-Gutierrez, Sergio Andres Garcia-Corzo, Felipe Garcia-Vallejo

DOI: https://doi.org/10.14198/jhse.2023.181.01

Abstract

The ventilatory threshold (VT) is the point at which ventilation intensifies disproportionately concerning to the oxygen uptake, this parameter is essential within the training methodology to optimize performance; the purpose of this work is to measure the degree of agreement between the determination of the ventilatory threshold determined by for oxygen uptake and four methods by Heart Rate Variability (HRV). Methodology: Twelve professional female cyclists between 18 and 28 years of age were evaluated through a maximal incremental test on a cycle ergometer; gas exchange was measure with a portable telemetric device (Cosmed K4b2®) and simultaneously the HRV was registered by R-R recording trough a Polar RS800CX® (Polar, Finland) heart rate monitor. Statistics: The degree of precision and accuracy established between the variables mentioned and normality test Shapiro-Wilk. Results: rho = 1.00 with p-value < .05, and Lin correlation and concordance coefficients of .99 with r = 0.98 for ventilatory threshold 2 (VT2), constituting a level of precision and accuracy almost perfect; by contrast, ventilatory threshold 1 (VT1) did not show significant precision and accuracy. This study suggests that VT2 can be identified from The time series. RR using the analysis of frequency and temporal domains likewise allows. Us to have a reference measure for future research in other sports.


Keywords

Ventilatory threshold; Ergospirometry; Heart rate variability; Cyclists; Women

References

Anosov, O., Patzak, A., Kononovich, Y., & Persson, P. B. (2000). High-frequency oscillations of the heart rate during ramp load reflect the human anaerobic threshold. European journal of applied physiology, 388-394. https://doi.org/10.1007/s004210000302

Arvidsson, D., Kawakami, N., Ohlsson, H., & Sundquist, K. (2012). Physical activity and concordance between objective and perceived walkability. Med Sci Sports Exerc, 2(44), 280-7. https://doi.org/10.1249/MSS.0b013e31822a9289

Blain, G., Meste, O., & Bermon, S. (2005). Influences of breathing patternson respiratory sinus arrhythmia in humans during exercise. Am J Physiol Heart Circ Physiol, 288, 887-951. https://doi.org/10.1152/ajpheart.00767.2004

Boron, W., & Boulpaep, E. L. (2015). Fisiología médica. Brasil: Elsevier Brasil.

Cabrera, M. A., Tafur, L. J., Cohen, D. D., García, S. A., Quiñonez, A., Povea, C., & Tejada, C. X. (2018). Concordance between the indirect V̇O2max value estimated through the distance in Yo-Yo intermittent recovery test level 1 and the direct measurement during a treadmill protocol test in elite youth soccer players. Journal of Human Sport and Exercise(13), S401-S412. https://doi.org/10.14198/jhse.2018.13.Proc2.24

Cabrera, M. A., Tafur, L. J., García, S. A., Arias, H., Quiñonez, A., Carreño, G., & Tejada, C. X. (2018). Yo-Yo intermittent recovery test level 2: Cardiorespiratory response and performance in professional soccer players, comparison between under 20 and over 20 years old players. Journal of Human Sport and Exercise(13), S351-S362. https://doi.org/10.14198/jhse.2018.13.Proc2.19

Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., & Lombardi, F. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. . Task Force of the European Society of Cardiology. Circulation, 1043-1063. https://doi.org/10.1161/01.CIR.93.5.1043

Cottin, F., Lepretre, P. M., Lopes, P., Papelier, Y., Medigue, C., & Billat, V. (2006). Assessment of ventilatory thresholds from heart rate variability in well trained subjects during cycling. International journal of sports medicine,, 27(12), 959-967. https://doi.org/10.1055/s-2006-923849

Cottin, F., Médigue, C., Leprêtre, P. M., Papelier, Y., Koralsztein, J. P., & Billat, V. (2004). Heart rate variability during exercise performed below and above ventilatory threshold. Medicine & Science in Sports & Exercise, 36(4), 594-600. https://doi.org/10.1249/01.MSS.0000121982.14718.2A

Cottin, F., Medigue, C., Lopes, P., Leprêtre, P. M., Heubert, R., & Billat, V. (2007). Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. International journal of sports medicine, 287-294. https://doi.org/10.1055/s-2006-924355

Dourado, V. Z., & Guerra, R. L. (2013). Reliability and validity of heart rate variability threshold assessment during an incremental shuttle-walk test in middle-aged and older adults. Brazilian Journal of Medical and Biological Research, 194-199. https://doi.org/10.1590/1414-431X20122376

Ebert, T. R., Martin, D. T., McDonald, W., Victor, J., Plummer, J., & Withers, R. T. (2005). Power output during women's World Cup road cycle racing. European journal of applied physiology, 95(5-6), 529-536. https://doi.org/10.1007/s00421-005-0039-y

Font, G. R., Pedret, C., Ramos, J., & Ortís, L. C. (2008). Variabilidad de la frecuencia cardíaca: concepto, medidas y relación con aspectos clínicos (I). Archivos de medicina del deporte: revista de la Federación Española de Medicina del Deporte y de la Confederación Iberoamericana de Medicina del Deporte, 41-48.

Grossman, P., & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biological psychology, 263-285. https://doi.org/10.1016/j.biopsycho.2005.11.014

Jarvis, A. T., Felix, S. D., Sims, S., Jones, M. T., Coughlin, M. A., & Headley, S. A. (1999). La Suplementación con Carbohidratos no Mejora el Rendimiento en Sprint en Mujeres Ciclistas-. PubliCE.

Karapetian, G. K., Engels, H. J., & Gretebeck, R. J. (2008). Use of heart rate variability to estimate LT and VT. International journal of sports medicine, 652-657. https://doi.org/10.1055/s-2007-989423

Kenney, W. L. (1985). Parasympathetic control of resting heart rate: relationship to aerobic power. Medicine and Science in Sports and Exercise, 451-455. https://doi.org/10.1249/00005768-198508000-00008

Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics(45:), 255-268. https://doi.org/10.2307/2532051

Lin, L. I. (2000). A note on the concordance correlation coefficient. Biometrics(56), 324-325. https://doi.org/10.1177/1536867X0200200206

Malek, M. H., Berger, D. E., Housh, T. J., Coburn, J. W., & Beck, T. W. (2004). Validity of VO2max equations for aerobically trained males and females. Medicine & Science in Sports & Exercise, 1427-1432. https://doi.org/10.1249/01.MSS.0000135795.60449.CE

Menaspà, P., Sias, M., Bates, G., & La Torre, A. (2017). Demands of world cup competitions in elite women's road cycling. International journal of sports physiology and performanc, 12(10), 1293-1296. https://doi.org/10.1123/ijspp.2016-0588

Mendia-Iztueta, I., Monahan, K., Kyröläinen, H., & Hynynen, E. (2016). Assessment of heart rate variability thresholds from incremental treadmill tests in five cross-country skiing techniques. PloS one, 11(1), e0145875. https://doi.org/10.1371/journal.pone.0145875

Mourot, L., Fabre, N., Savoldelli, A., & Schena, F. (2014). Second ventilatory threshold from heart-rate variability: valid when the upper body is involved?. International journal of sports physiology and performance, 9(4), 695-701. https://doi.org/10.1123/ijspp.2013-0286

Naimark, A., Wasserman, K., & McIlroy, M. B. (1964). Continuous measurement of ventilatory exchange ratio during exercise. Journal of Applied Physiology, 4(19), 644-652. https://doi.org/10.1152/jappl.1964.19.4.644

Peinado, A. B., Pessôa Filho, D. M., Díaz, V. B., Álvarez-Sánchez, M., Zapico, A. G., & Calderón, F. J. (2016). The midpoint between ventilatory thresholds approaches maximal lactate steady state intensity in amateur cyclists. Biology of sport. https://doi.org/10.5604/20831862.1221812

Potts, J. T. (2006). Inhibitory neurotransmission in the nucleus tractus solitarii: implications for baroreflex resetting during exercise. Experimental physiology, 59-72. https://doi.org/10.1113/expphysiol.2005.032227

Ramos-Campo, D. J., Rubio-Arias, J. A., Ávila-Gandía, V., Marín-Pagán, C., Luque, A., & Alcaraz, P. E. (2017). Heart rate variability to assess ventilatory thresholds in professional basketball players. Journal of Sport and Health Science, 6(4), 468-473. https://doi.org/10.1016/j.jshs.2016.01.002

Ruiz, L. (1999). Rendimiento deportivo, optimización y excelencia en el deporte. Revista de psicología del deporte, 8(2), 235-248.

Serrato, M., & Galeano, E. (2015). Colección 1 de los Lineamientos de Política Pública en Ciencias del Deporte en Medicina. Bogota: Coldeportes.

Tiller, W. A., McCraty, R. M., & Atkinson. (1996). Cardiac coherence: a new, noninvasive measure of autonomic nervous system order. Alternative therapies in Health and Medicine, 52-65.

Wasserman, K., Beaver, W. L., & Whipp, B. J. (1990). Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation, 14-30.

Wasserman, K., Hansen, J., Sue, D., Whipp, B., & Froelicher, V. (1987). Principles of exercise testing and interpretation. Journal of Cardiopulmonary Rehabilitation and Prevention(7(4), 189). https://doi.org/10.1097/00008483-198704000-00014

Zoladz, J. A., Duda, K., & Majerczak, J. (1998). Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans. European journal of applied physiology and occupational physiology, 445-451. https://doi.org/10.1007/s004210050358




DOI: https://doi.org/10.14198/jhse.2023.181.01





Copyright (c) 2018 Journal of Human Sport and Exercise

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.